———————————————————————————

AD-A225 573

e o e o e e o o i D P < o o o o . T D A T " D D

I i opy

!
% GOAL RECONSTRUCTION: HOW TETON BLENDS
SITUATED ACTION AND PLANNED ACTION

Technical Report AIP 125

Kurt Vanlehn
William Ball
Departments of Psychology & Computer Science

The Artificial Intelligence
and Psychology Project

Departments of
Computer Science and Psychology

Carnegie Mellon University .

Learning Research and Development Center
University of Pittsburgh

Approved for public release: distribution unlimited, 024

GOAL RECONSTRUCTION: HOW TETON BLENDS
SITUATED ACTION AND PLANNED ACTION

Technical Report AIP 125

Kurt VanLehn
William Ball
Departments of Psychology & Computer Science

Carnegie Mellon University
Pittsburgh. PA 15213 U.S.A.

AL BV

3 November 1989

To appear in K. VanLehn (Ed.), Architectures for Intelligence.

This is the final report on the research supported by the Computer Science
Division, Office of Naval Research, under contract N00014-86-K-0678.
Reproduction in whole or in part is permitted for any purpose of the United
States Government. Approved for public release; distribution unlimited.

REPORT DOCUMENTATION PAGE

4 w——
1a, AT SECURITY CLASSIFICATION
2. RePo ﬁnciassified

1b. RESTRICTIVE MARKINGS

S ———————— T —— s
2a. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/ AVAILABILITY OF REPORT
Approved for public release;

I'2b DECLASSIFICATION / DOWNGRADING SCHEDULE

Distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBER(S)
AIP - 125

S. MONITORING ORGANIZATION REPORT NUMBER(S)

6b. OFFICE SYMBOL

6a. NAME OF PERFORMING ORGANIZATION
(1 applicadie)

Carnegie Mellon University

7s. NAME OF MONITORING ORGANIZATION
Computer Sciences Division
Office of Naval Research (Code 1133)

6c. ADORESS (City, State, and ZiP Code)

Department of Psychology
Pittsburgh, PA 15213

75. ADDRESS (City, State, and 2IP Code)

800 N. Quincy Street
Arlington, VA 22217-5000

8b. OFFICE SYMBOL
{if appicabdie)

8a. NAME OF FUNDING / SPONSORING
ORGANIZATION

Same as Monitoring Organization

9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
NO0O14~86-K-0678

& ADDRESS (City, State, and 2IP Code) 70 SOURCE OF FUNDING NUMBERS p40005ub201/ 7-4-86
PROGRAM PROJECT TASK WORK UN'T
ELEMENT NO | NO NO. ACCESSION NO
N/A N/A N/A N/A

11 TITLE (inciude Securrty Cisssification)
Goal reconstruction:

How Teton blends situated acticn and planned action

12 PERSONAL AUTHOR(S)
Kurt Vanlehn and William Ball

13b TIME COVERED

FROM :‘_%;EE !; TO g!%@ !14

13a. 7YPE OF REPORT
Technical

[1S. PAGE COUNT
44

14. DATE OF REPORT (Year, Month, Oay)
1989Nov3

16 SUPPLEMENTARY NOTATION
Erlbaum,

In K. VanlLehn (Ed.), Architectures for Intelligence, Hillsdale, NJ:

'y COSATI CODES

FIELD GROUP SUB-GROUP

cognitive modelling
reactive planning

18 SUBLECT TERMS (Continue On reverse if necessary and identify by biock number)

problem solving

19. ABSTRACT (Continue on reverse if necessery and dentify by block number)

SEE REVERSE SIDE

20 cglsrmunoumvmuumv OF ABSTRACT
UNCLASSIFEOAUNLIMITED [X] same as reT

Dornc useas

21 ABSTRACT SECURITY CLASSIFICATION

228 NAME OF RESPONSIBLE INDIVIDUAL
Dr. Alan L. Meyrowitz

22¢. OFFICE SYMBOL
NOOGC14

22b TELEPHONE (Inciude Area Code)
(202) 696-4302

DO FORM 1473, 84 man

83 APR ed ion may be vsed until exhausted.

ECURITY (FICATION QF THiS PAGE

All gther edition; are Obsolete.

‘Unclassified

_— T -

..

-

This chrapter discusses an extra capability that few cognitive architectures have, even though it is both
useful from a programming point of view and arguably a good approximation to a human capabilities.
People can reconstruct goal structures and other aspects of their internal state that have been forgotten.
For instance, suppose one is interrupted in the middle of solving a difficult problem by a long involved
phone call. When the phone call is over, one can eventually pick up the problem solving where one left off.
This capability is called goal reconstruction. Because goal reconstruction requires no special training to
acquire it and it does not have to be acquired separately fcr each a new problem solving procedure one
learns, goal reconstruction is arguably a fundamental, task-general capability of human problem solvers.
Goal reconstruction is also a useful capability even for an artificial problem solver. #t permits recovery from
interruptions of the problem solving by processes that modify the body of procedural hnowledge, such as an
inferential learning process or a programmer debugging the procedural knowledge. in shor, goal
reconstruction is both a fundamental human capability and a useful capability for At architectures. B

Goal reconstruction is pant of the larger process of maintaining a goal structure. Our analysis of goal
reconstruction is based on the insight that goal maintenance is a special case of the notorious frame
problem in Al. The frame problem is to keep a mode! of the world up to date as actions take place in the
world. Sometimes actions have unexpected and wide-ranging effects, which may make it difficult to
calculate how much of the model needs changing in order to reflect the change wrought by the action on
the real world. Of course, if the agent can see the world, then perceptual processing can be partially
substituted for the cognitive processing that calculate updates to the model. At first glance, the frame
probiem has nothing to do with goal maintenance. Goals are not usually thought of as being a pan of the
real world, so literally speaking, maintenance of goals is not maintenance of an internal model of the
external world. However, the agent’s knowledge, when viewed as a disembodied logical sy.ten:, can be
applied to the external world in order to generate a virtual or ideal goal structure. For the sake of the
analcgy, we can pretend that this Platonic goal structure is *in the real world." Now it is clear that
maintaining the agent's internal goal structures is exactly a frame problem: it must manipulate its internal
goal structures so that they accurately reflacts changes in the external, Platonic goal structures. As always
in the frame problem, perceptual processing can be substituted, at least in principle, for internal
calculations. This paper discusses computational mechanisms for implementing this *in principle” tradeoff
between perceptual and cognitive maintenance of goals.

Table of Contents

1. Three problems fo be solved by goal reconstruction 2
2. Reconstruction in several problem-space architectures 7
2.1. Modeling state changes with a TMS 8
2.2. Goal reconstruction in a problem-space architecture 10
2.3. Goal reconstruction in precondition-based problem solvers 15
2.4. f;oal reconstruction in procedure-following systems 17
3. Arithmetic learning: An application requiring perception 19
3.1. The need for global parsing 20
3.2. Grammatical definitions of task-specific problem representations 21
3.3. Annotated grammars: Another version of situated action 23
3.4. A TMS-based parser 25
3.5. Summary: When is reasoning really perceptual? 27
4. Discussion: Multiple levels and extra capabilities 28
4.1. Goal reconstruction 32
4.2. Explanation of worked examples 32
4.3. Impasse handling 33
4.4. Rule acanisition events 34
4.5. Conclusions 35
5. Appendix: Teton 36
5.1. Knowledge representation 36
5.2. The execution cycle 37
5.3. Memories 39

Acesssion Por

NTIS coagl

Petic Tas

[(I ENVAIRY Yol

Ju.tifie (Ulon

- - - e e

N

b
[o —
‘}{l‘!~' ¢ ition/ I
k —
AV, 1ty Colag !
| L0l i arp '—t
EDi;it Goemton

. |

13

Table of Contents
1. Three problems to be solved by goal recunstruction
2. Reconstruction in several problem-space architectures
2.1. Modeling state changes with a TMS
2.2. Goal reconstruction in a problem-space architecture
2.3. Goal reconstruction in precondition-based problem solvers
2.4. Goal reconstruction in procedure-following systems
3. Arithmetic learning: An application requiring perception
3.1. The need for global parsing
3.2. Grammatical definitions of task-specific problem representations
3.3. Annotated grammars: Another version of situated action
3.4. A TMS-based parser
3.5. Summary: When is reasoning really perceptual?
4. Discussion: Multiple levels and extra capabilities
4.1. Goal reconstruction
4.2. Explanation of worked examples
4.3. Impasse handling
4.4, Rule acquisition events
4.5. Conclusions
5. Appendix: Teton
5.1. Knowledge representation
§.2. The execution cycle
5.3. Memories

When you purchase a programming language, what you actually receive is an a program (an inierpreter
or a compiler) that causes texi written in the programmiung language to control the actions of the computer.
When you buy an experi system shell or an Al programming environment, you get not only an interpreter but
a varicty of other programs as well. For instance, you often receive inference engines, data base management
tools, graphics packages and libraries of utility programs. When you obtain a symbolic architecture, you
receive an interpreter and some extra capabilities, most of which are not found even in the most advanced
evnert eveterp <hells. For instance, in the Pittsburgh architectures--Soar (Rosenbloom, Newell & Laird,
1990), Prodigy (Carbonell, Knotlack & Minton, 19??) and Theo (Mitchell et al., 1990)--the extra capabilities
include a kind of dynamic optimization. Programs automatically get faster as they run. Froi, a purely
pragmatic view, a symbolic architecture is just an expert system shell with some novel features added. Even
architectures that are intended to model human cognition resemble augmented expert system shells. If one
removed the antomatic learning from ACT* (Anderson, 1983), it would be indistinguishable from many
expert system shells on the market, because they too have a scmantic net database and a production system
programming language. On the other hand, the current state of the art is merely a siage in the development
of much more powerful architectures. Architectures may evolve to the point where they are no longer
programmed but instead acquire expertise through training and experience in much the same way that
humans do. However, it is fair to say that we do not yet have such gencral problem solvers. Currently. an

architecture is a programming language with some powerful, unusual extra capabilitics.

This chapter discusses an extra capability that few architectures have, even though it is both useful
from a programming point of view and arguably a good approximation 10 a human capabilities. People can
recenstruct goal structures and other aspects of their internal state that have been forgouen. For instance,
suppose one ;s interrupted in the middle of solving a difficult problem by a icng involved phone call. When
the phone cal! is over, one can eventually pick up the problem solving where one left off. This capability is
called goal reconstruction. Because goal reconstruction requires no special training to acquire it and ii does
not have to be acquired separately for each a new problem solving procedure one learns, goal reconstruction
is arguably a fundamental, task-gcﬁeml capability of human problem solvers. Goal reconstruction is also a
useful capability even for an artificial problem solver. It permits recovery from interruptions of the problem
solving by processes that modify the body of procedural knowledge, such as an inferential leaming process
or a programmer debugging the procedural knowledge. In short, goal reconstruction is both a fundamental

human capability and a useful capability for Al architcctures.

Goal reconstruction is part of the larger process of maintaining a goal structure. Our analysis of goal

——— -

[

reconstriction is based on the insight that goal maintenance is a special case of the notorious frame problem
in AL The frame problem is to keep a model of the world up to date as actions k< place in the world.
Sometimes actions have unexpected and wide-ranging effects, which may make it difficult to calculate how
much of the model needs changing in order to reflect the change wrought by the action on the real world, Of
course, if the agent can see the world, then perceptual processing can be partially substituted for the cognitive
processing that calculate updates to the model. At first glance, the frame problem has nothing to do with goal
maintenance. Goals are not usually thought of as being a part of the real world, so litcrally spcaking,
maintenance of goals is not maintenance of an intemal model of the external world. However, the agent's
knowledge, wher viewed as a disembodied logical system, can be applied to the external world in order to
generate a virtual or ideal goal structure. For the sake of the analogy, we can pretend that this Platonic goal
structure is "in the real world."! Now it is clear that maintaining the agent’s internal goal swructures is exactly
a frame problem: it must manipulate its internal goal structures so that they accurately reflccts changes in the
external, Platonic goal structures. As always in the frame problem, perceptual processing can be substituted,
at least in principle, for internal calculations. This paper discusses computational mechanisms for

implementing this "in principle” tradeoff between perceptual and cognitive maintenance of eoals.

1. Three problems to be solved by goal reconstruction

Goal reconstruction is a solution to three problems 1n cognitive theory. Two of the problems stem
from inadequacies in current accounts of human working memory for goals. The third problem is that
current accounts of problem solving overemphasize planning and plan-foilowing, because much of human

behavior is situated as opposed to being planned. This section contains a discussion of each problem in turn.

The first problem has to do with working memory capacity for goals. People cannot remember
arbitrarily large goal structures for arbutrarily long times. For instance, a telephone call often causes one to
forget one’s place in a problem. An early approach to modeling this human trait was tc assume that goals
were held in a capacity limited memory, called STM or working memory. For instance, Newell and Simon
(1972, pg. 808) claimed that "STM holds about five to seven symbols, but only about two can be retained for
on> task while another unrclated task is performed.” Because working memory holds both goals and
intermediate results, and these can accumulate quickly while problem solving, it is difficult 1o perform

significant computations when working memory is strongly capacity limited. Thus, it was assumed that

"Many Al probiem solvers assume that high level descriptions, such as “block-1 suppons block-2,” are pan of the real world. In fact,
a robot would have to infer such relationships with the aid of a sophisticated vision system. Goals are also produced by inferences. So it
15 not such a great leap to consider goals as well as "block-1 supports block-2" relationships as being "in the real world.”

people use the external world as a storage place for temporary results while problem solving, and this makes
it just like a working memory. For instance, Newell and Simon say (pg. 801) that the operative "STM should
b2 defined, not as an internal memory, but as the combination of (1) the internal STM (as meusured by the
usual psychological tests) and (2) the part of ihe visual displav that is in the subject’s foveal view.” Thus,
instead of trying to remember an intermediate result, such as T=0, the person writes it down on a worksheet.
Things are not so simple for goals, however, because people do not usually wrile goals on their worksheets.
Anderson (1983, pg. 161) showed how to reconstruct Tower of Hanoi goals using task-specific knowledye
about the puzzle, but he did not present a general capability. Thus, goal reconstruction has been thought for
some ume to be important as a way of increasing the effective capacity of working memory, although a

general model of goal reconstruction was never developed.

Another problem in cognitive theory involves the access characteristics of goal memory. In most
models of human goal storage, goals are held in a last-in-first-out goal stack (Newell & Simon, 1972; Laird,
Newell, & Rosenbloom, 1987; Vanlehn, 1989a). That is, when a person is done with a goal and needs 10
select a new goal 1o work on, the only goals that can be selected are those that were most recently created and
are not yet accomplished. This restriction is called the LIFO (last-in-first-out) convention. Consider, for

instance, a cognituve procedure with the following goal structure:
Top goal

Subgoal 1
Sub-subgoal A
Sub-subgoal B

Subgoal 2
Sub-subgoal C
sub-subgoal D

Suppose all these goals are conjunctively related, so that achieving the top goal means that all the subgouls
must be achieved. Suppose further that the lowest goals, the ones with letters as their names, correspond o
physical actions that an experimenter could observe the subject doing. Let us sce what kinds of goal
sclection orders are allowed by the LIFO restricuon. Suppose the top goal constructs subgoals 1 and 2 at the
same tme. Subgoal 2 15 selected, and constructs goals C and D at the same ume. Goal C is selected. After 1t
is finished by performing some physical action, the subject must choose either goal 1 or goal D, as these two
have been constructed but not yet exccuted. The LIFO restriction implics that geal D must be chosen, as it is
younger. Thus, in a LIFO architecture, the experimenter would never sec actions in the sequence CADB, as
this interleaves subgoals of goals 1 and 2. Of the 24 possible permutations of the four primitive goals, only §

can be generated by a LIFO architecture.

Intnitively, the LIFO restriction is quite implausible. It essentially says that there are some subgoals

that one can recall but cannot select. In the example above, one can recall subgoal 1 (since 1t will be selected
later) and vyet one cannot select it because subgoal D is younger. For instance, suppose the top goal 15 "do
evening chores” and subgoals 1 and 2 are, respectively, "clean breakfast dishes” and "prepare dinner.” A
LIFO restriction would mean that one would have to clean all the breakfast dishes before starting the dinner

preparation, or vice-versa. On this analysiz, many people violate the LIFO restriction nightly.

The problem with the evening-chores example is that we do not really know what the goal structures of
the subjects are. There are other goal structures than the one above that would allow a LIFO architecture o

interleave dish-cleaning actions with dinner-preparing actions.

There are, however, good examples of the LIFO constraint being violated. We discovered N
elementary school students (from a sample of 263 who executed subtracuon procedures in a non-LIFO order
{VanLehn, Ball & Kowalski. 1989). The goal structure of subtraction procedures is quite well undersiond
(VanLehn, 19894, and there 1s no reason to believe that these students” goal structures were any diiferent
from their peers”. It the 8 students did have one of the standard goal structures, then the sequence of phyacal

acuions they made could only be accomplished by violating the LIFO constraint,

Moreover, there were strong regulanues in the 8 students’ ac ions that make it highly unlikely that
their behavior is due to working memory failures wherein a basically LIFO goal storage mechunism
“acaidentally” marks the wrong goal as most recent. This source of non-LIFO execution should appear as
random “point” mutations to the standard execution sequence and it should also be fairly infrequent. This was
not what the 8 students did. They generally had two or more stable execution orders, some of which could
only be generated by a non-LIFO architecture. For instance, one student had 3 stable orders:

1. The standard order. Columns are processed right-to-left, and the borrowing for onc column is

finished before the next column is begun.,

2. Horizonwl order. All the borrowing in the problem is done on a right-to-left horizontal pass
acioss the columns. Then the columns are answered on a second horizontal pass, which may be

either right-to-left or left-to-right.

3. Venucal order. Columns are processed in right-to-left order. However, borrows are not
completed before moving on to the next column. Instead, all marks in column, including any
marks caused borrows from earlier columns, are done together.

The student used the standard order on 4 problems, the horizontal order on 4 problems, the vertical order on 3

problems, and a blend of the horizontal and vertical orders on two problems. The systematicity of her

behavior makes it implausible that her non-LIFO orderings arce based on working memory failure.?

These 8 students provide clear examples of violations of the LIFO constraint. They allow us
conclude what was intuitively obvious all along: people can select any goal for execution that they can recall.
Vhether or not it is sensible to make a non-LIFO choice is, of course, task specific. The reason the LIFO
constraint has survived as long as it has in models of the architecture is duc to the structures of the task
domains, which generally require or encourage a LIFO selection of goals. Subtraction, which is not one the

task domains typically studied in the architecture literature, does not have this LIFO property.

This work shows that the operative working memory is non-LIFO, but as Newell, Simon, Anderson
and others have pointed out, the operative working memory is implemented in part by visual perception. It
could sull be the case that interaal working memory 18 LIFC and that the non-LIFO aspects of the
subtraction subjects’ behavior is due to the way they infer or reconstruct goais from what they see. This led

us Lo mvestigate the process of goal ceconstruction.

A third problem in cognitive theury comes from recent werk in robotics and cthnomethodology.
Several invesugators have worned that real-tme. adaptive control of behavior does not atlow for interleaving
planming and plan following. Instead, people just act. As Agre and Chapman (1987, pg. 268) put it, "Rather
than relyving on reasoning to inervene between pereeption and action, we believe activity mosdy derive~
from very stmple sorts of machinery nteracting with the immediate situatton. This machinery explois
reyulariues inoats anteraction with the world to engage in complex, apparently planful activity without
requinng exphait models of the world.”™ This behief that action (s derived by cursory examination ot the

sitwation rather than reasoning 1s often called the situated acuon paradigm (Suchman, 1987).

It would be wrong to think that the proponents of situated action claim people’s mental apparatus
makes 1t impossible for them to plan their actions. As Agre and Chapman (1987, pg. 272) put it, "We do no:
beheve that the human central system has no state. Our point 1s simply that state 1s less necessary and less
important than 1s often assumed.” Currendy developed computational models of situated action (Agre &
Chapman, 1987: Brooks, 1990) are claimed to be interesting architectures for roboti-s and not literal models
of human cognitive capabilitics. These architecture have so little intemnal <ate that they can not modcl

simple tasks, such as counting or mental multiplicauon, that humans can easily perform. Even mundanc

“One might think that this subject has three disunct subtraction procedures, one for cach order However, this would not explain her
ahthity 10 biend the honzontal and vertical orders, as she does on two problems For more discussion of this and other chalienges to the
conclusions see Vanlehn, Ball and Kowalsk) (1989)

tasks, which are intended to be the forte of these architectures, sometimes cannot be done in a purely situated
way. For instance, one of us once had a job washing glassware in a medical laboratory. The procedure was
to wash the glassware 6 times in tap water then 6 times in distilled water. Since one cannot tell by looking at
a piece of glassware how many times it has been washed. the Pengi architecture (Agre & Chapman, 1987)

cannot solve this task.

Suchman (1987) uoes take situated action as an account of human behavior, so her positicn 1s more
complex than her robotics colleagues. Suchman points out that people do plan, as for example, when they
study a river rapids in order to plot a course for their canoe. However, these plans "are constituent as an
artifact of our reasoning about action, not as the geucraiive mechanism 2f action.” (Suchman, 1987, pg. 39,
emphasis originaly Suchman is mostly concemed with plans derived as post-hoc explanations of behavior, so
her book does not contain a clea- statement about the causal entailments of plans made in advance of an
acuion. Her choice of a canocing example suggests that she does believe that advance planning can effect
actions, albeit indircetly: planning to paddle o the left around a boulder in the rapids is one factor involved in
causing the ultimate action of paddling to the left of the boulder. Suchman’s major point, however, is thar
advance planning is rare, and even when it does occur, "plans are best viewed as a weak resource for what is

primarnly ad hoc actvity.” (ibid, pg. 1)

The situated action positon is certinly partially right, because current models of the human problem
solving have emphasized planned action rather than situated action. In part this is due to their histonical
roots, which lie in studies of people working with puzzles, mathematical problems and other tasks where
planned actions arc probably more common than situated actions. The problem for cognitive modeling is to
devzlop an architecture that can easily and seamlessiy oscillate between planncd action and situated action,
since both occur in human behavior and we are often not even aware, even in retrospection, of the transitions

between them (Suchman, 1987).

We believe that goal reconstruction is exactly what is needed for this scamless oscillation between
situated and planned ¢ ction. An architecture will be described that can operate wilh almost no internal state
by rapidly reconstrucdng whatever goals are necessary in the current situation. It will be demonstrated that
the ;e goal reconstruction processes are formally identical to processes for perceptual parsing of the situatior,
so goal reconstruction can be thought of as high-level perception. This nicely captures the principal intuition
of the situated action paradigm, which is that much action is guided by percepton. On the other hand. when
goals can be recalled or when they muw e recalled, the architecture can do that as well. So it ¢ develop

plans in memory and follow them. Moreover, this sort of planned activity blends scamiessly into situated

activity.

In short, goal reconstruction is claimed to be a solution to these three problems in cognitive modeling:
How do people access more goals than they can reliably store in memory? How do people implement a

non-L1FO goal store” How do people blend situated and planned action?

2. Reconstruction in several problem-space architectures

Goal reconstruction depends strongly on interpretation of visual scencs, so it would seem that any
model of goal reconstruction should include at least a rudimentary model of percepion. However, it is
convenient to start the discussion by ducking the question of perception entirely. In this section, an initial
mechanism for goal reconstruction is developed. In the next section, the initial model is augmented with a

rudimentary model of perceptual processing.

A standard way to avoid modeling perception (and motor contrel as well -- but that is irrelevant to this
paper) 1s 10 use a problem space. In order to model a given task, the theorist specifies a set of primitive
predicates and a wey of composing them into descriptions of a problem state. In the model, the current
problem state, which 1s onc of these compositions of primitive predicates, represents that which the person
infers from perceiving the real problem state. Thus, the problem space technique avoids the perception issue
by postulating the output from the perceptual inferpretation processes without describing the processes

themselves.

There are many ways to implement a problem space. This section argues that goal reconstruction is
ssmple to implement i any of the implementations of problem spaces. However, in order to make the
argument casier to follow, an implementation of goal reconstruction will be described for a particular
implementation of problem spaces. This implementation depends crucially on a Truth Maintenance System
or TMS. Although this is a standard picce of technology in Al, it was devcloped fairly recently (Doyle,
1979, deKleer, 1986), so not all readers may be familiar with it. The first subsection describes a TMS-based
implementation of problem spaces and how a TMS works. The second subsection presents a simple
implementation of goal reconstruction. The third subsection argues that goal reconstruction is simple to add

1o other implementations of problem spaces.

2.1. Modeling state changes with a TMS

The implementiiivia ol problem spaces presented here is the one pioneered by Strips (Fikes, Hart &
Nilsson, 1972). The TMS-based implementation of Strips problem spaces was developed more recently and
is used by Prodigy (Carbouell, Knoblock & Minton, 197?) and other problem solvers.

A state is represented by a set of literals in a first order logic. A lite-al is just a single predicate which
may or may not be negated. Thus, on(block56,block2) and not (clear (top(block2))) are
both literals, Literals that are used to represent states have no variables in them. They have only constants,
such as block56, and functions of constants, such as top (block2). We use the Prolog convention of

capitalizing variables. Constants, functions and predicates are written in lower case.

Perception (reading the state) is modeled by matching expressions against the set of litcrals that
represents the current problem state. To find out what block is on block2, the expression on (X, block2)
is compared 1o all the literals in the current state until one is found that matches (unifics) with it. Matching
causes the variable X to be matched to a constant, say block56, thus answering the question of which block

isonblock?.

Action is represented by adding and deleting literals from the current state, thus creating a new state.
A generic action is called an operator, and its generic effects are represented by a list of literals to be added to

the current state (the add-list) and a List of literals to be deleted (the del-list).

In order o allow this economical description of actions to model complicated state changes, rules are
used 1o maintain logical relationships that hold in all states. For instance, suppose the problem space uses a
literal indirectly-cn (X, Y) that means that X is directly on top of Y (i.e., on (X, Y)) or X is on top of
something that is indirectly-on Y. Two rules can be used to provide a formal recursive definition of

indirectly-on:

l. If on(X,Y) then indirectly-on(X,Y).

2. If there is a Z such that on(X,2) and indirectly-on(Z,Y),

then indirectly-on(X,Y).

Given these rules, the operators need only mention their effects on the on literals. They do not have to
mention indirect ly-on literals in their add-lists and del-lists since the effects on those can be calculated
with the two rules above. For the sake of discussion, let us distinguish primitive litcrals from derived literals.
A primitive literal is one that is added directly to the problem space by an operator’s execution because a

generic version of it appeared in the operator’s add-list. A derived literal is one that is added by the

exccution of arule.

Although it is clear that the rules provide the knowledge that is required for omitting derived literals
from add-list and the del-lists, it is not as simple as it might seem to get the sysiem to use this knowledge
effectively. There are two basic methods. The simpler one, which was used by Strips, is to create a new
empty state, add all ihe primitive literals specified by the operator’s add-list and copy all the primitive litcrals
from the old state that are not mentioned by the operator’s del-list. Now the new state has all the primitive
literals that it should have. The derived literals are added by repeatedly firing the rules until no new derived
literals are inferred. Many of these derived literals will be equal to ones in the preceding state. For instance,
if block A is on block B in the old state, and the action does not effect that, then indirectly-on(A,B) is
true in both the old state and the new state. Thus, this method of modeling action amounts to reconstructing

problem states.3

The other method of modeling, which is used by Prodigy (Carbonell, Knoblock & Minton, 1977),
achieves exactly the same result, but is more efficient because it substitutes cheap copying and removal
operations for expensive rederivation operations. The copying and removal operations use a TMS. The
basic idea is to copy all the literals in the old state, including the derived ones, then remove all the literals that
should be removed and add all the literals that should be added. The trick is to remove only the right literals.
This happens in two stages. First, all the primitive litcrals that are explicitly mentioned in the operator’s
del-list are retracted. Second, the TMS retracts derived literals whose derivations depend on retracted
primitive literals. In order to do this, the derivations of the literals have to be remembered. If any of the
primitive literals in the derivation are retracted, then the derived literal is also retracted. This retraction

process is guaranteed to retract all and only the appropriate derived literals.

Next, the TMS-based system adds the literals from the operator’s add-list and runs rules until
quiescence. There is a trick that is used to speed this part of the process up. It is often the case that one of
the derived literals that was retracted during the first phase is rederived during the second phasc. Since the
system has to remember derivations anyway, it is can save work by looking up the derivations that depended
on this literal and calculate which oncs can now be reinstatcd because the literal has been reasserted.
Reinstating old retracted literals can be computationally cheaper than reinferring them. This trick is called

un-outing (Doyle, 1979; deKleer, 1986).

3Although this description uses forward chaining, most problem solvers use backwards chaining. Instead of drawing all possible
inferences as soon as the state is created, backward chaining makes inferences only when the problem solver poses 2 query, such as
irdirectly-on(X,kliock2). The important point is that in the reconstruction method, only the primitive literals are copied from
the old state 1o the new state. Exactly when the derived literals are inferred does not manter.

“A derivation is a proof tree whose leaves are primitive literals. Thus, if rule 1 is used 1o derive C from A and B, and rule 2 is used to
derive E from C and D, then the derivation for E is the tree (E (C (A B)) D).

10

An example of a TMS-based state maintenance may be helpful. Suppose that when ever a block is

supported directly or indirectly by the table, then X stable. This is expressed by the following rule
If indirectly-on(X,table) then stable(X).

Suppose that in the old state, block56 is indirectly on the table and stable because it is on block2, which is
directly on the table. That is, on(block56,block2) and on(block2,table) imply that
indirectly-on(block56,table) by the rules listed earlier, and this implics statle (block56).
Suppose that an operator applies, and moves blockS6 off block2 and onto the table. The del-iist of the
operator will retract on(blockS56,block2) and the TMS will thus retract
indirectly-on{(block56,table) and stable (block56) because their derivations depended on
the retracted literal. Eventually, all the appropriate literals will be removed from the state. Now the TMS
adds literals from the add-list, including on (block56,table). The rules are run, and they infer
indirectly-on(block56,table). The TMS notices that this literal is identical to one in the old
state. It uses the un-outing mechanism 1o reinstate stable (blockS6) immediately without referring to
the inference rules. It knows that this is appropriate because the denivation of stable (block56), which
has 1n be saved anyway for retraction 10 work correctly, indicates that stable (block56) depends only

on indirectly-on(blockSé,table).

2.2. Goal reconstruction in a problem-space architecture

Although both the reconstruction and TMS methods of implementing state change are widely used in
Al (see Charniak and McDermott's (1986) textbook, section 7.3), it is rarely recognized that they can also be
used for maintaining the problem solver’s goal structures. This section sketches a problem solver, similar to

Amord (de Kleer, Doyle, Stecle & Sussman, 1977), that uses a TMS to maintain its goal structures.

A goal is usually defined to be a description (i.e., logical expression) of a state that is desired. A goal
is satisfied if the current state matches the description. A pending goal is a logical expression that does not
match th~ current state. Suppose problem solving starts with an initial state that contains a pending goal,
which is represented by wrapping the pseudo-connective pending-goal around a logical expression.
Thus, the goal of holding block37 in one’'s hand can be represented by

pending-goal (holding(block37)).

When pending goals are represented this way, the rule mechanism mentioned above can be used to
calculate what kinds of actions are appropriate for the given goals. This is most easily demonstrated with an
example. The following rules indicate how to achieve a holding (X) goal given that the hand can only

hold one block at a time.

11

If pending-goal(holding(X)) and not (holding(Y)),
then executable (pick-up(X)).

If pending-goal (holding{X)) and holding(Y) and not (X=Y),
then pending-goal (not (holding(Y))).

If pending-goal (not (holding(2))) and holding(2)
then executable (put-down(2)).

These rules use pseudo-literals of the form executable (Op}, where Op is an operator, in order to indicate

that the specified operator is an appropriate action. In this case, if the initial state is the literals

holding(blocké6)
pending-goal (holding(block37))
not (block37=blocké6)

then the second and third rules will add the following derived literals:

pending-goal (not (holding(blocké6)))
executable (put-down (block6))

This represents the process of deciding that putting down the block being held is a good idea given the

current goal and the current situation, Much more complicated reasoning can also be represented.

When an action is finally taken, some or all of the pending-goal literals must be retracted because
their predicates will now be true and only unsatisfied goals are represented with pending-goal literals.
Both the reconstruction methods and the TMS method work just fine for updating pending-goal literals.
Let us consider reconstruction first. In order to model the state change caused by executing the operation
put-down (block6), reconstruction adds the literal not (holding(block6)) to the new state
because that literal is mentioned in the operator’s add-list. Then it copies over primitive literals from the old
state that are not mentioned in the del-list. This adds pending-goal (holding(block37)) and
not (block37=blocké) to the new state. Notice that the old derived literal,
pending-goal (not (holding(block6))), is not copied over. Now the reconstruction method runs
the rules, which adds to the state the literal executable (pick-up (block37)). This demonstrates
how the reconstruction method works to maintain goal structures. Essentially, it starts over from the top
level goal, which is the only one that is a primitive literal, and rederives as much of the goal structure as is
still relevant. In this very simple illustration, no old goals were reconstructed. Usually, many old goals will

be reconstructed.

The TMS method can be used in order to avoid some of the computation of reconstruction. In order to
use it, the derivation of a goal must be stored with the goal For instance, with

executable (put-down (blocké)) the system associates the tree

executable (put-down (block6))
pending-~goal (not (holding(blocké6) })
pending-goal (holding(block37))
holding(blocké)
not (block37=block6)
holding(blocké6)

which records its derivation via the rules listed earlier. In order to update the state, the TMS method first
retracts holding (blocké) because it is mentioned in the operator’s del-list. Since this literal occurs in
the derivations of both pending-goal (not (holding (block6))) and
executable (put~down (block€)), those two literals are retracted as well. Next the system adds
not (holding (block6)) because that literal is mentioned by the operator’s add-list. The rules run, and
the literal executable (pick-up (block37)) is derived. This demonstrates how the TMS method can

maintain goal structures.

The TMS method is more memory intensive than the reconstruction method. It requires that the
problem solver remember all the derived literals from the old state and moreover, it should remember the
derivations of each literal as well. What would happen if memory failed? If a litcral was completely
forgotten and the literal was going to be retracted anyway, then it does not matter that it was forgotten. On
the other hand, if the literal was not going to be retracted, then it must still be derivable from literals in the
new state, so the rules will end up deriving it. So forgetting a literal does no harm. What if the literal is not
forgotten, but its derivation is, or worse yet, only part of its derivation is forgotten? The problem solver must
somehow detect this and treat the whole literal as if it were forgotten. If it can do that, then the literal and its
derivation will be reconstructed if necessary and retracted (via forgetling) otherwise. Although the TMS-
based method requires memory storage for the derivations, it is quite robust because it can easily reconstruct

forgotten derivations.

From this perspective, the TMS mecthod and the reconstruction methods are just two ends of a
continuum. If all the derived literals can be recalled, then the faster TMS method is used. If none of the
derived literals can be recalled, then the slower reconstruction method is used. If only some of the derived
literals are recalled, then TMS-bascd retraction and reconstruction are used jointly to produce the appropriate

goal structure. This is a scamless combination of reconstruction and recatl.

Notice that the primitive literals cannot be forgotten. If they are, then the whole scheme falls apart,

since there are no rules for deriving them from other literals.’> However, problem spaces are usually designed

’Acmally. some literals can be both primitive and derived because they appear in both the add-list of operators and the conclusions of
rules. These literals could be reconstructed if forgotten, at least in principle. They will continue to be ignored in order to simplify the
discussion.

13

so that the primitive literals model unforgettable information. For instance, the literals that describe the
current state are usually chosen to correspond to perceptually available information (e.g., which block is my
hand holding?), and are thus unforgettable. The top level goals are assumed to be either perceptually
available (e.g., from instructions written on a card handed to the subject) or very familiar. Literals that reside
unchanged in all states (e.g., not (block37=block6)) correspond to common sense or well-learned

facts.

The next step in the argument is to show that this mechanism for maintaining goals solves the three
problem: mentioned in the introduction: capacity limitations on goal storage, non-LIFO access to goals, and

blending situated and planned action.

The capacity problem is that many computations seem to require more goals than the human short-term
memory system has room to store. At first glance, it seems that this mechanism completely solves the
capacity problem. As long as the top level goal is held in long term memory, any other goals that are
forgotten can be reconstructed. However, if we take an extremely simple model of the short-term store, such
as a buffer with 7 cells, then it is possible for the goal reconstruction mechanism to fail. As goals are
reconstructed, the rules generate literals that may be needed a few moments later by other rules. If more than
7 of these literals are generated, then some may be lost from memory before being used. It is imponant to
note, however, that although the number of literals requiring storage in STM may be large, they do not have
to be stored there for very long. It is well known that the number of chunks that can be recalled from STM
varies inversely with the delay between storage and recall. The simple buffer model does not reflect this,

although more complex buffer models could.

A standard modcl with the appropriate decay properties is based on spreading activation. In this
model, gaining access to a goal requires that the goal exist in memory and that its activation level be above
some threshold. In order to recall an old goal, activation can be spread up through the derivation trees
starting with the literals that stand for perceptual chunks (which are presumably highly active as they are the
current focus of visual attention) and the top-level goal. This corresponds to normal retrieval of an old goal.
If the goal is inaccessible via spreading activation, then it can be reconstructed. Some elements of its
derivation tree will be accessible (in the worst case, only the leaves can be retrieved). These trigger rules
whose execution creates new literals that are copies of the forgotien ones. In most spreading activation
theories (e.g., ACT* -- Anderson, 1983), newly created elements are given high activation. Although
activation decays rather rapidly at first, as long as the goal reconstruction process occurs rapidly and without

interruption, it should be possible to reconstruct large numbers of goals. Thus, the initial impression that a

14

TMS-based mechanism solves the goal capacity problem is actually correct, although there appear to be

some subtle interactions with the operation of the underlying memory system.

The second problem mentioned in the introduction is that people sometimes execute goals that are not
the most recently created pending goal. In LIFO architectures, this is not possible. The architecture sketched
in this section is not necessarily a LIFO architecture. If the rules are run to quiescence, then they will find all
pending goals whose preconditions are met and mark them as executable. The problem solver is free to

choose any of them for execution.

The last preblem mentioned in the introduction is to find a way to blend situated action and planned
action. In a single-agent world, the above mechanism suffices. If all goals are forgotten during a state
change, then the agent can be said to have no state, so it is a situated-action agent. The calculations that are
performed by goal reconstruction would have to be performed by any agent possessing the same knowledge,
and the above mechanism makes it seem that the intermediate results of these calculations must be stored as
literals. However, one can replace the rules by gates in a combinatorial logic and the literals by wires
connecting gates. Seen this way, the goal reconstruction calculation requires no more state than Agre and
Chapman's (1987) Pengi or Brook’s (197?7) subsumption architecture. So in a world where the only source
of state change is the agent itself, the TMS-based goal maintenance mechanism seamlessiy blends situated

and planned action.

If the world has multiple sources of state changes, then the agent must supplement the add-list and
del-list with perceptual operations. These have the same effects as the lists do, in that they cause addition
and retraction of literals. The TMS propagates these through the goal structure in the usual way. Thus if
another agent helps our agent by satisfying one of our agent’s pending goals, then perception will add a
literal to the state, and the TMS will ultimately retract that goal. Similarly, if a hostile agent undoes a goal
that our agent previously accomplished, then the un-outing mechanism of the TMS will quickly reinstate the
goal.® Thus, the agent will behave adaptively in a changing world where not all of the changes are under its
control. The TMS-based mechanism is adequate for blending situated and planned action even in a multiple

agent world.

In addition to solving the three problems mentioned in the introduction, the TMS-based goal

5This TMS-based goal maintenance mechanism does not model the process of deciding which executable action to execute. This is
called action arbitration by Agre and Chapmar. (1987) and Brooks (1990). Their systems seem to use some ad hoc priority-based
system to do action arbitration. Presumably, such a system could be used here as well, or a more complex system, like the goal
preferences of Prodigy (Carbonell, Knoblock & Minton, 19?7?), could be used instead.

15

maintenance system bears striking similarities to the overall human memory system. As noted earlier, when
people are distracted from a task by a long telephone call, they have the ability to reconstruct the goals and
other internal state that they have forgotten. On the other hand, if they are not distracted, then they do not
require similarly extended periods of time for reconstructing their state after each action. Moreover, there
seems to be no sharp boundary between human retrieval and reconstruction. The seamless combination of
TMS and reconstruction methods also has the same lack of a sharp boundary. It is well known that human
recall is facilitated by making the perceptual environment at recall similar to the perceptual environment at
storage. This is consistent with the TMS/reconstruction combination, where the accuracy and availability of
the whole state depends strongly on the accuracy and availability of the primitive literals. In short, the
combined TMS-reconstruction method of state updating is qualitatively similar to human memory, at least as

far as problem solving is concerned.

2.3. Goal reconstruction in precondition-based problem solvers

The simplicity of the TMS-based goal maintenance system is due to its use of rules for reasoning about
goals. Although this is elegant and allows certain issues to be presented clearly, rule-based representaticns of
planning knowledge can be awkward and redundant, especially for conjunctive goals. A more widely used
technique represents that knowledge in ihe operators themselves as a set of preconditions on the operator.
This is the representation used by Strips (Fikes, Hart & Nilsson, 1972) and its many descendants. The goal
reconstruction capability of the Amord-style problem solver of section 2.2 can also be implemented in a

Strips-style problem solver. The next few paragraphs demonstrate this.

An example will help in comparing Amord-style and Strips-style problem solvers. In a Strips-style

problem solver, the pick-up operator could be represented as:
Name: pick-up
Arguments: X
Preconditions: not (holding(Y))
Add-list: holding (X)
Del-list: on(X, 2)
This representation replaces the rules listed earlicr for the Amord-style reasoning about goals. For instance,

one of the rules mentioned earlier says

If pending-goal (holding (X)) and holding(Y) and not (X=Y),
then pending-goal (not (holding(Y))).

Let us use the Strips representation to do the example mentioned earlier, where the goal is
holding (block37). The system searches for an operator whose add-list matches the goal. In this case,
pick-up is found. Next, the preconditions are checked. In this case, the precondition is false, because

holding (blocké6) is true. Whenever a precondition is not satisfied, the system makes it into a subgoal.

16

Thus, the system makes not (holding(block6)) a goal. Clearly, this Strips-style reasoning has
achieved the same effect as the inference rule from the Amord-style problem solver. The knowledge

representation, however, is more parsimonious.

Most Strips-style problem solvers do not use a TMS for mairtaining their goal structures. In fact, we
do not know of any that use a TMS. Instead, they use a goal tree, or more frequently, just a part of the tree
arranged in a goal stack. Although less elegant than the TMS-based method, goal maintenance with a goal
tree has all the same properties. The next few paragraphs are a point-by-point comparison of the goal tree

and TMS methods of maintaining goals.

In TMS-based maintenance of goals, the derivation of each goal must be stored so that retraction and
un-outing can function correctly. Instead of a derivation, a tree-based goal maintainer uses the goal tree
itself. Instead of a TMS daia structure indicating that pending-goal (not (holding (block6))) was
denived from pending-goal (holding (block37)) and other literals, the goal tree has a data structure
indicating that pending-goal (not (holding (block6))) is a subgoal of

pending-goal (holding (block37)) caused by an unsatisfied precondition.

In TMS-based maintenance of goals, executing an operator first causes all satisfied goals to be
retracted. In tree-based maintenance, the exact process of finding satisfied goals seems to vary from one
problem solver to the next. However, the gist of the method is to check goals in the tree and see if the goal’s
literal is now in the current state. If it is, then that goal is satisfied and all its subgoals are now irrelcvant.
These goals are marked appropriately or removed from the tree. If a goal stack is used instead of a goal tree,

this phase can be accomplished by popping the stack.

After the satisfied goals have been dealt with, the TMS method infers new goals using its inference

rules, whereas the tree-based method infers new goals using the operators’ preconditions.

One of the advantages of the TMS-based method of goal maintenance for human model is the seamless
integration of reconstruction and revai:. The same advantage can be obtained with a goal tree. If pans of the
goal tree are forgotten, they can be reconstructed by starting at an ancestor goal and using the usual
precondition-based subgoal creation method. If subgoals are created that are equal to ones that have not been
forgotien, then the new tree can be attached at this point 10 the tree rooted at the recalled subgoal. The goal
indexing mechanism used in GPS (Ernst & Newell, 1969) and most of its successors will cause this
reattachment (which is equivalent to un-outing) to happen automatically. Thus, in most cases no new

mechanisms need to be added to the system in order to achieve a qualitative similarity to human behavior.

17

This section has shown that goal reconstruction is a capability that can be easily added to a problem-
solving architecture. Moreover, the goal maintcnance mechanism shifts seamlessly from recall to

reconstruction of goals, which makes its performance qualitatively similar to human bchavior.

2.4. Goal reconstruction in procedure-following systems

In our vocabulary, a goal serves two purposes. It is both a description of a desired state of the world,
and it is a part of the control structure of the problem solver. For some tasks, the description of desired states
mention features that cannot be detected by unaided perception. If a person has already washed a piece of
medical glassware 6 times in tap water, then washing it 6 tmes in distiled water will achieve a state of
cleanliness that is not distinguishably different from its current state. The only simple description of the goal
to be achieved is just the procedure for achieving it: wash the glassware 6 times in distilled water. A large
number of tasks have this property. After a house is built or a tax form is filled out, the results look to the
visible eye like a house or a tax form. But the quality of the house or the tax accounting can vary widely
depending on which procedures were followed in achieving it. Properly cured concrete looks exactly the
same as an improperly cured concrete. The only way to know if the properly-cured-concrete goal has been
met is destructive testing (which partly undoes the goal of having properly cured concrete) or checking that
the proper curing procedure has been followed. Many goals in human culture have the property that they are
partly specified by the visible state to be achicved and partly specified by the procedures that should be

followed in achieving them.

Although most problem-solving architectures can only accept goals that are specified by descriptions
of the desired state, Sicrra is one that is specifically designed to follow procedures (VanLehn, 1987;
VanLehn, 1989a). Recently, it has been augmented with the ability to accept goals specified as desired

states. The resulting architecture, called Teton, is documented in an appendix to this chapter.

When goals are specified by procedures, reconstruction of goals becomes more complicated. Teton
can handle some cases (but not all) with a fairly simple mechanism. Teton uses a Strips-like operator
representation for procedural knowledge. In addition to the usual slots for preconditions and so forth,
operators can have a shoricut condition. This condition is checked just before executing an operator, If it is
true, then the operator is not executed but its goal is marked "satisfied" anyway. For example, in order to

reconstruct the goals of the following partially completed multiplication problem,

336

x 208
2682
7200

S

18

Teton would run the multiplication procedure which causes an operator, call it
Single~digit-multiply, to be instantiated for each of the three digits in the multplier, 208. Suppose
the operator has a shortcut condition that is true if the partial product row to be filled already has some digits
in it and there is something written underneath that row (i.e., another partial product row or a bar). In the
case of the units digit instantiation of Single-digit-multiply, the shortcut condition is true, so the
operation is marked completed. However, the shortcut conditions are false in the case of the tens digit, so
execution resumes with that operation. Thus, Teton reconstructs goals then judiciously takes "shortcuts”

instead of executing some of them.

As a quick check on the plausibility of this type of processing, we took a protocol from a subject who

was asked to complete the partially solved problem shown above. She said:
Alright. Since there are two columns done [referring to the partial product rows], I know that the first digit on
the right hand side of the bottom number has been muluplied. Um. 1 would stant the, um, since the second
column is a zero, somebaody has filled in the zero. I would now go to the third digit on the bottom column and
do all the multiplication involved there. Two times six is twelve, two times three is six plus one is seven, two
tmes three is six and then [would do the addition starting {rom the right hand side, and get the answer.
The furst sentence corresponds to taking the shortcut on the Single-digit-multiply of the units digits
of the multiplier. The sccond sentence corresponds to the execution of the Single-digit-multiplivofl
the wens digit. The rest of the protocol corresponds w execution of Single-digic-muloiply for the

hundreds digit. This protocol corresponds quite well with the type of goal reconstruction used by Teton.

Shortcut conditions are task-specific knowledge about how 1o reconstruct specific goal trees.
Sometimes people may have 10 learn shortcut conditions, and sometimes they may be able to deduce them

from general principles in the midst of reconstructing a goal.

There is another type of task-specific knowledge about goal reconstruction that people sometimes use.
If one can anticipate forgetting some goals, say because the phone is ringing and onc intends to answer it,
then one can take steps now that will make reconstruction much casier to do later. For instance, if one is
interrupted by a ninging phone in the middle of adding up a long column of figures, one can write the subtotal
down and mark the last number added in. This will enable reconstruction later. Teton does not handle this
sort of knowledge. It would be a fascinating behavior to simulate, because the agent must have a crude
model of forgetting in order to plan ways to prevent forgetting from happening. It also must be able to tell

what aspects of its state are worth saving, so it must understand its capabilities for goal reconstruction.

As usual in cognitive modeling, we can model the most common cases but the other cases are orders of

magnitude harder to model. Goal reconstruction is easily modeled when goals are descriptions of visible

19

aspects of the state, as in the case of the Amord-style problem solvers and the Strips-style problem solvers.
When goals are partially procedures, then the shortcut conditions of Teton can handle some of the cases.
However, the remaining cases of goal reconstruction present tricky problems that are likely to resist

modeling for some time.

3. Arithmetic learning: An application requiring perception

The preceding account of goal reconstruction ignored perceptual processing and assumed that its
output was available in the form of literals in the current problem state. Part of the novelty of situated action
is the claim that perceptual processing handles most of the load in guiding activity. In this section, we
discuss how to integrate perception and problem solving in such a way that goal reconstruction retains all the

good properties that it had when problem solving was based on problem spaces.

This investigation grew out of a study of how people learn arithmetic, algebra equation solving and
other written procedures. There is fairly good evidence that students pay close attention to the visual syntax
of the writ'~n expressions and may even inducc visual features into their procedures that the teacher did not
mtend them to leam (VanLehn, 1989a; Vanlehn, 1986). This reliance of visual features 1s the key w
explaining many otherwise mysterious phenomena, as the following example illustrates. When students are
introduced to borrowing, teachers usuaiy use the simplest subtraction problems they can -- ones with just
two columns. Here is a borrowing problem that has been solved in the manner taught in many American

textbooks:

-t N
QO W

16
Some students nouce that the decrement action takes place in the leftmost column of the problem, and nduce
that all such actions should take place in the lefimost column. This Icads them to make crrors like the

following one:

1
2

)
[T I
ol w -

2
Early version of Sierra simply postulaied a problem space that includes leftmost and other relations that
students induce. It would leave out relations that they did not seem to play any role in their learning. Thus,
the initial state would contain the literal leftmost (column3) but it would not contain the literals
rightmost (columnl) or hundreds(column3). Although this allowed Sierra to explain the

systematic errors of thousands of students, it also pushed the mystery of learning back one more level. Sicrma

explained how procedures are learncd, but what explains how the problem spaces are leamned? This
comment is not meant 10 denigrate the accomplishment -- all models of learning bottom out on some kind of
assumptions about prior knowledge, and most models of procedure acquisition botlom out on the problem

space, just as early versions of Sierra did.

In the case of mathematics, it is particularly important to explain problem spaces rather than assume
them. The problem space embeds knowledge of mathematical notation, which is somcthing that students
leamn (and mislearn!) in school. Whereas someone might naturally think of a column of 3 wooden blocks as
something that is important enough 10 see and record in the problem space as a conposite structure, such as
stack (block37, block6, blockl3), the habit of seeing a subtraction problem as columns instead

of rows is something that has to be learned in school.

As a first step in determining how people acquire mathematical problem spaces, and knowledge of
notational syntax in particular, it is wise to determine what the representation of that knowledge is like. This

makes it easier to formulate learning models for notatonal knowledge.

Pursuit of these goals led us to the problem of devising a representation of notational knowledye that
could be micely integrated with mathematical problem solving. The first part of this section discuss some
constraints on the representation of notational/perceptual knowledge. These were uncovered by wrying
simple approach and discovering that they were inadequate. The second part of the section presents a sysiem
that scems to meet all the constraints. Moreover, 1s structure sheds some hight on the distincuon hetween

situated and planncd activity.

3.1. The need for global parsing

The first attempt at representing notational/perceptual knowledge was to assume that task-speaific
terms in the problem space were defined by task-general terms using standard first-order logic Thus,
cclumn (X) 15 defined to be a sequence of three vertically aligned cells, and celi (¥) 1s defined to be a
digit, a blank or a digit that has been scratched out and written over. The co™ umn (X) defininon might be

represented formally as:

column (X) ::= part-of(X,Cl) & part-of(X,C2) & part-of(X,C3) &
cell(Cl) & cell(C2) & cell¢C3) &
sequence (X) & first(X,Cl) & last(X,C3) & middle(X, C2) &
ordered(X,C1,C2) & ordered(X,C2,C3) & ordered(X,Cl,C3) &
adjacent (C1,C2) & adjacent (C2,C3)

Leaming mathematical notation is assumed to consist of learning definitions like this one. There are a

varicty of machine lcaming algorithms sufficient for learning such concepts from examples and a given set of

21

primitive concepts (e.g., Winston, 1975; Vere, 1975; VanLchn, 1987). In this case, the given concepts are
perceptual primitives, such as adjacent (X, Y). This is not the large loophole that one might imagine
because the set of perceptual primitives needed for matheinatical symbol manipalation is surprisingly small.
For instance, one vocabulary sufficient for arithmetic and algebra required only ten predicates (sec pg. 183,
VanLehn, 1983). A much more complex vocabulary would be needed for, say, high school geometry or

mechanical drafting.

It might seem that the major difficulty in this approach to explaining the acquisition of mathematical
problem spaces would be determining how people acquire concepts such as column. In fact, this approach
failed utterly before even getting to that stage. Even when definitions are constructed by hand, it proved
impossible to find definitions that would perform like people do. For Sierra, the visual world was
represented as a Cartesian plane with characters centered at particular x-y coordinates. One problem was to
get a definition of "algebraic formula" that is true of “2+3" when it stands alone in the plane, but to be false
of "2+3" when it is embedded in "2+3x." Another problem is that adjacent (3, x) should be true of (a)

balow and false of (b) despite the fact that the two symbols are closer in (b) than in (a):
a. 3 x =y

The problem here is that an interpretation of a subset of some mathematical symbols is acceptable only if it
participates in a global interpreiation which inciudes all the symbols. This is analogous to many English
words, such as "run”, which can be interpeted either as a noun or a verb depending on the globlal
interpretation of the sentence it is a part of. Compare "I'm not going to run today” with "I had a good run
today.” In the analysis of both English and mathematical syntax, better techniques are bas: d on context-free

grammars or something like context-free grammars.

3.2. Grammatical definitions of task-specific problem representations

In order to use context-free grammars as a representation for knowledgr of mathematical aotation, a
few augmentations to the standard formalisms were needed. For instance, because mathematical notation is
two-dimensional, rules need w indicate whether their constituents are arranged horizontally, vertically or

diagonally. Table 3-1 shows a simplified grammar for arithmetic problems.

This grammatical formalism accomplishes what the first-order logical definitions of terms could not. It

can properly parse arithmetic and algebraic expressionse. Unfortunately, a very nasty problem was

22

Table 3-1: A simplified grammar for arithmetic notation

1. Problem <-- Sign Column$; horizontal
2. S8ign <-- +

3. 8ign <-- =~

4. Sigm <-- x

S. ColumnS <-- Column Column$S ; horizontal
6. ColumnS <-- Column

7. Column <-- Cell Cell Cell ; vertical
8. Cell <-- Digit

9. Cell <-- Blank

10. Digit <-=- 1

11. Digit <-- 2

encountered when Sierra’s problem space machinery was replaced with a parser for this formalism.

The problem occurs when states change. For Sierra, state changes are always due to writling a new
symbol on the visual page. When this happens, there is usually not much change in the parse tree.” Filling a
column’s answer in a subtraction problem only effects one small part of the parse tree -- that which concerns
the particular blank cell that is filled by the new symbol. Sometimes, however, writing a single symbol has
effects on other parts of the tree. Writing one symbol changes "2+3" into "2+3x," which changes the
interpretation of the 3. In order to allow for arbitrary changes in the state, Sierra ignores the old statc’s parse
tree and constructs a new one for the current state. This has the unfortunate side-effect of making obsolete
most of the goals held in Sierra’s working memory because most goals have arguments that mention nodes in
the parse tree. When the visual scene is parsed anew, a whole new parse tree is produced, but the goals
continue to mention nodes from the old parse trec. By parsing the current state, Sicrra makes obsolete all the

goals with objects as arguments.

7A parse tree is a record of the derivation or parsing of a particular sentence, or in this case, of a particular mathematical expression.
A parse tree for the ventical form of 2+1 when parsed by the grammar of table 3-1 would be:

Problem -- Derived via rule 1 from:
Sign -- Derived via rule 2 from:
+ (perceived)

ColumnS ~-- Derived via ruile 6 from:
Column -- Derived via rule 7 from:
Cell -- Derived via rule 8 from:

Digit -- Derived via rule 11 from:
2 (perceived)
Cell -- Derived via rule 8 from:
Digit -- Derived via rule 10 from:
1 (perceived)
Call -- Derived via rule 9 from:
Blank (perceived)

where indenting represents the hierarchical relationships in the tree.

23

Several years ago, this seemed like a nasty technical problem with no important theoretical
implication. It was circumvented with some subtraction-specific hacks and banished to appendix 8 of the

first author’s dissertation (VanLehn, 1983).

3.3. Annotated grammars: Another version of situated action
In the intervening years, the situated action paradigm has begun exploring the idea that people rarely
plan by building up stacks or trees of pending goals. Instead, they parse the situation so as to "sec”

possibilities for actions. Thus, goals are not held in memory, but perceived in the situation.

In order to better understand the implications of the situated action view, we implemented an
architecture, called Rocky. Instead of a procedure, Rocky has a grammar that is just like the one used by
Sierra to represent knowledge of mathematical notation except that it has a few extra annotations. For
instance, the rule for parsing a column, rule 7 in table 3-1, is annotated to indicate the numerical relationship

among its the cells in the column:

7. Sub-column ~-> Digit, Digit, Digit, ; vertical
where: Digit, = Digit, - Digit,

We call this kind of knowledge representation an annotated grammar. With proper interpretation, it seems

quite likely that an annotat.d grammar can generate actions and solve problems just as well as a procedure.

By getting rid of goals, the annotated grammars approach solves the problem of goals becoming
obsolete. Each time the state changes, a new parse tree is constructed and nodes that are capable of having
actions taken on them are marked as executable. The resulling parse tree quite literally wears the
possibilities for action on its sleeve. Thus, an annotated grammar not only parses the visual plane, it also
does all the reasoning that would normally be done by the rules of section 2.2 that compute with literals

named goal and executable.

Annotated grammars seem to implement what Suchman (1987) had in mind when she said, "We
generally do not anticipate alternative course of action, or their consequences, until some course of action is
already under way. It is frequently only on acting in a present situation that its possibilities become clear.”

(Suchman, 1987, pg. 52, original emphasis)

Unfortunately, the annotated grammars approach ran into grave difficulties when we tried to
implement some of the less visually oriented mathematical procedures. For instance, consider a common
procedure for solving multiplication problems, which involves skipping zeros in the multiplier, as in the

following problem:

— —e—

24

2345

x 1204
9380
469000
+2345000
2823380

There are four multiplier digits, but only three partial products. In order to properly pair off the multiplier
digits and the partial proJucts, an annoiated grammar must encode what amounts to a right-to-left traversal of
the multiplier digits. Similarly, it is difficult to differentiate the zeros that are inserted in order to vertically
align the partial procedures from the zeros produced by multiplications (see the second parual product
above). Counting or some other kind of iteration is needed in order to determine these mapping from the
visual plane. This cannot be done in the representatinn for grammars used by Rocky. Although the
representation could perhaps be augmented, this would go against the situated action paradigm, which tries to
obtain action without explicit e.ecution of procedural knowledge, such as an iteration across a string of

digits.

The underlying problem is that the only way to properly understand some problem states is to know
how they were derived, and this historical information is sometimes not present in the perceptual
information. In the task of washing medical glassware, one cannot tell by looking at a piece of glassware

how many times it has been washed. An annotated grammar cannot perform this task.

In retrospect, it appears that Rocky’s version of situated action is too extreme. It tries o keep no
historical information about the problem solving and instead work only with what it can infer from the
current situation. This is a rather implausible hypothesis, for surely a person in the middle of a problem
would recall and use information about immediately preceding actions and decisions if such historical
information were useful. As argued earlier, most architectures based on problem spaces have this property
(or could have it given a few simple augmentations). They recall goals when they can and reconstruct them
otherwise. Their reconstruction proceeds from primitive literals, which often represent outputs from
perceptual processing. Somehow this useful and psychologically plausible property has been lost in the
attempt to deepen the model of perception so as to allow for task-specific knowledge about mathematical

notation.

25

3.4. A TMS-based parser

Let us temporarily abandon the parsimony of unifying procedures and grammars and return to the old
assumption that procedures and grammars are two distinct bodies of knowledge. This means that there are
two types of internal state, a parse tree and a goal structure. The parse tree nodes correspond to the objects

that would exist in the current problem state if a problem space approach were being used.

This means we must solve the updating problem wherein all goals that refer to parse nodes become
obsolete with each state change because the parse trees for different states share no nodes. What we would
like is an updating technique that will allow parse trees from consecutive states to share as many nodes as
possible. Only parse nodes for parts of the visual plane that are "really new" would be built. However, the

definition of "really new" depends on the task.

A solution that we think will work (it has only been partially implemented) is based on the same
TMS-reconstruction method that was used successfully with regular problem spaces, The key idea is to note
that parsing a visual scene is a special kind of inference, where grammar rules correspond to inference rules
and parse nodes correspond 1o literals. A TMS is used to retract only those literals (parse nodes) that are
changed, directly or indirectly, by the writing of a new symbal on the visual plane. In order to make this idea
work for mathematical notation, however, we must be very careful about the representation of blank space in

the visual plane.

As a running example, consider the change from "2+3" to "2+3x." The status of the 3 should be

changed, but the parse node for the whole formula should stay the same. Suppose that the grammar is just

sum =--> term 4+ term ; horizontal
term --> term term ; horizontal
term --> 2
term --> 3
term --> x

Let parse nodes be represented by unary ground literals. The predicate is the category of the constituent and
the argument is a region. For concreteness, let a region be represented by four numbers in square brackets,
corresponding to the left, top, right and bottom boundaries of the region. Thus, term ({5, 23,25,13))
represents a term occupying a certain region. With these definitions, the first grammar rule becomes the

following inference rule.

If there are three regions, Rl, R2 and R3 such that
term(Rl) & plus(R2) & term(R3) &
right-boundary(Rl) = left-boundary(R2) &
right-boundary(R2) = left-boundary(R3) &
region C is the union of regions R1, R2 and R3,

then sum(C).

26

The visual plane is represented by primitive literals and the grammar (inference) rules create derived literals.

In order to make the TMS-reconstruction method work, literals that mean the same thing, relative to
the task, should be syntactically equal. Recall that reconstruction continues to run inference rules until no
new literals are produced. "New" is defined relative to syntactic equality. If a literal is produced that is equal
1o an existing literal, then we say that a new derivation was found for an old literal; a new literal was not
produced. Equality of literals depends crucially upon the definition of regions. Let us define the top
boundary of a resior 10 be halfway between that region and the next region in the positive y-direction If there
is no such region, then the boundary is set at infinity, which is represented by "*." Define the bottom, left
and right boundaries similarly. Thus, "+" in the expression "2+3" would be represented by the literal

plus ({35, *,45,*]) because the top and bottom boundaries are at infinity.

With this definition, the literal sum ([*, *, *, *]) represents either "2+3" or "2+3x" written alone on
a page. This makes the two terms syntactically equal, which is just what we want. A goal whose argument
refers 10 "2+3" will not be made obsolete by state change. Both before and after the state change, the goal’s

argument will be sum ([*, *, *, *]).

Let us see how the TMS handles the state change from "2+3" to "2+3x." The parsc tree for "2+3"

consists of the following literals:
aum([*,*,*,*])
term([*, %, 35, 6*])
two ([*,*, 35 %])
plus([35,%,45,%*])
term({45,*%, %, *])
three ([45,*,%*,6*])

AU W N

When the writing operator puts an "x" in region [55,*,* *], it must retract primitive literals whose regions
have been overlaid and assert new literals with smaller regions. In this case, the literal on line 6 above must
be retracted and a new literal three ({45, *, 55, *1) is asserted. Retracting the literal on line 6 causes
the TMS to retract the literals on lines S and 1, since their derivation depends on the literal of line 6.
However, the addition of the new literals for "x™ and "3" causes reconstruction, which leads ultimately to a

new parse tree, which is:
sum([*, *, *, *])
term([*, *,6 35, *])
two([*, *,35, *])
plus ([35,*,4%,*])
term ({45, *,%, *])
term([45,*,55,*))
three([45, *,55,*])
term([55,%,*,*])
0. x([S5,%,%,*])

HOodundswh e

27

The literal on line 5 has been reconstructed. Although it has a different derivation now, it occupies the same
region as before, so it is equal to the old version. The un-outing mechanism of the TMS will detect this and

cause the literal on line 1 to be reinstated.®

It appears that the updating problem has at last been solved. By using a TMS-based method, only
parse nodes that are truly different are changed. This means that only goals whose arguments have really

changed must be reconstructed.

Moreover, by using the TMS-based method of updating, we obtain the same seamless blend of recall
and reconstruction that characterizes human recall behavior. If parts of the parse tree are forgotten, then the

TMS-based updating method will simply reconstruct them without even "noticing” that they were forgotien.

3.5. Summary: When is reasoning really perceptual?

In this section, we have descended into the ugly details of mathematical notation in order to find out
what would happen if the problem space approximation was dispensed with and something more like real
perception was modeled. It turned out to be much more difficult than it first appeared. There were two
interacting sources of difficulty. The first was the fact that mathematical notation cannot be defined locally,

but only by finding the most globally coberent parse of the visual plane.

The second difficulty occurs when updating the state after an operation is executed. This problem,
which includes the frame problem of Al, can be solved in the problem space framework using Strips
operators and a TMS. However, it is more difficult when perception is modeled. The global coherence of a
perceptual parse means that the individual parts of the parse depend on each other in subtle ways. A change
to one small piece of the visual plane can ripple through the parse and change large amounts of it. After a
noble but ill-fated attempt at ducking the problem (the annotated grammars approach), a method was found
for representing mathematical notation so that the propagation of changes died out quickly. This allowed
perceptual parsing to be updated by roughly the same TMS-based method that successfully updates state

changes when problem spaces are used.

Stepping back still further, one sees that the two computations, one supposedly procedural and the

other supposedly perceptual, are nearly identical. The perceptual calculation updates a "state,” which is a set

$The old parse tree, which treats "243" as a sum, is stll available, but now is has sum{([*,*,*,55]) as its root instead of
sum([*,*, %, *]). This literal does not participate in a parse that covers 2ll the symbols. In order to avoid generating it, the
inference mechanism should only produce literals that panicipate in the derivation of a literal whose argument is [*,*/**]). This
restriction would be simple 1o implement in a backwards chaining control structure; a forwards chainer would require a filter.

28

of existing objects and their relationships to each others. The procedural calculation updates a "goal
structure,” which is a set of desired things and their relationships to each other. In order 10 obtain a
reasonable solution to the frame problem, the same TMS-based method is used to update both the state and
the goal structure. This method also yields robustness to forgetting, even the kind of massive forgetting

caused by answering long telephone calls.

From » computational point of view, nearly the only way to tell that one calculation is perceptual and
the other is procedural is to read the English names of the predicates, which is something that only a human
observer can do. The situated action theorist would probably call the whole calculation perceptual.
Traditional problem-solving theorists would call the whole calculation problem solving., Planning theorists
would call it planning or perhaps reactive planning. As far as we can see, what you call it does not change
what it is and does. As with many of the great binary distinctions in Al (e.g., procedural vs. declarative,
logic vs. knowledge engineering), the distinction between situated action and planned action may turn out 1o

be too ill-defined to be useful.

4. Discussion: Multiple levels and extra capabilities

Two claims are made in this chapter. One claim is that goal reconstruction solves at least three
problems: allowing intelligent problem solving within a limited capacity store for goals, providing non-LIFO
access to goals, and creating a seamless blend of situated and planned action. The other claim is that most
current problem-solving architectures already have the capability to do simple goal reconstruction or could
easily add that capability with a few changes. These are primarily computational claims, although we have
indicaled at several points the similarities of goal reconstruction and human cognition, and particularly the
way a TMS-based goal maintenance system mimics the way human memory blends recall and
reconstruction. Most of this section discusses the psychological status of goal reconstruction, but first we

present one further clai.,

Goal reconstruction is useful in building Al systems. This claim is based on our experience with our
newest problem-sulving architecture, Cascade. Cascade is a simplified version of Teton. The major
simplification is that it can only represent monotonic state changes (i.e., all the operators have empty
del-lists). While constructing an expert system in Cascade for solving physics problems, we discovered that
goal reconstruction was quile useful during debugging. The usual cycle during debugging is to try a
computation, detect a mistake, find the buggy piece of knowledge, correct it, and redo the computation. Goal

reconstruction makes redoing the computation much faster because the problem solver can begin more-or-

29

less from where it left off. We are currently adding a learning engine to Cascade that will act roughly like a
programmer would in debugging the knowledge base. We suspect that goal reconstruction will aid the
leaning engine just as it aided the programmer. If our experience generalizes, then there are some
unexpected practical benefits to adding the little bit of extra code to problem-solving architecture that allows

it to reconstruct goals

It is time to address the psychological status of goal reconstruction. Is it a part of the real human
cognitive architecture? Newell (in press) and Pylyshyn (1984) define the cognitive architecture to be those
parts of cognition that are innate, subject-universal (i.e., common to all subjects) and cognitively
impenetrable. We think that goal reconstruction is subject-universal, but neither innate nor cognitively
impenetrable. For instance, instructions to the subject can probably cause them to modify the way they do
goal reconstruction, which would imply that goal reconstruction is cognitively penetrable and hence not a
feature of the true cognitive architecture, according to Pylyshyn (1984). Thus, computational architectures
such as Teton that have goal reconstruction built into them are not good models of the cognitive architecture.

A better computational model would represent goal reconstruction as knowledge -- a program in the model’s

library.

However, there are problems with modeling goal reconstruction as a cognitive procedure that has the
same form as a procedure for arithmetic or physics. A procedure for goal reconstruction would have to take
two inputs, the perceptual situation and the task’s procedure (e.g., multiplication), and produce a goal
structure as output. This procedure would not only have to be a meta-level procedure, because it reads other
procedures and produces goal structures, but it would have to duplicate most of the functionality of the
architecture’s interpreter. The goal reconstruction procedure would essentially be a copy of the interpreter
with a few extra lines of code added. This position is not only unparsimonious, but nearly self-contradictory.
How could a person lean a procedure that is a copy of their architecture when the architecture is not open to
introspection? In short, there are grave technological and developmental problems with the position that goal

reconstruction should be modeled as a cognitive procedure rather than a feature of the architecture.

The fact is that cognitive modelers are not free to set the architecture/program boundary anywhere they
want. Even the Soar group, with its emphasis on aligning Soar's architecture with the human cognitive
architecture, finds it convenient to provide a selection problem space as part of the bare, "innate” Soar. In its
format, the selection problem space is identical to problem spaces for acquired capabilities, such as a solution
procedure for a puzzle, but the selection problem space is considered to be a model of a capability that is

innate, subject-universal and cognitively impenetrable.

30

Rather than label Soar, Teton and other architectures as failures, let us reconsider the research
objective proposed by Newell and Pylyshyn, which is 1o develop an computational architecture that models

all and only the human capabilities that are innate, subject universal and cognitively impenetrable.

First, not everyone cares about innateness, universality and penctrability. More typically, learning
theorists begin by defining a set of tasks that they intend to explain. For instance, Anderson (1983) chose
memory tasks (mostly), Berwick (1985) chose English syntactic analysis tasks and we chose problem solving
tasks. In order to explain the observed learning behaviors, the theories assume specific prior cognitive
capabilities. These are processes and structures that are assumed to exist at the time the tasks’ acquisition
begins. For instance, one of Anderson’s theory’s prior capabilities is a semantic network with specific
functions for spreading activation and strengthening connections. Berwick’s theory assumes a fixed parser as
one of its prior capabilities. We assume that goal reconstruction is a prior capability. Although all these
theorists seem 1o believe in the subject-universality of their prior capabilities, none have addressed cognitive
penetrability and their claims about innateness are made tentatively if at ali. This is quite reasonable. The
objective of their investigations is an explanation of human behavior in the chosen task domains. Assuming
that a prior capability is innate or impenetrable adds litle to the explanatory adequacy of their theories.
Logically, an explanation for some acquisitional behavior does not have to involve ascriptions of innateness

and penetrability, but only assumptions about what capabilities existed prior to the observation period.

If the cognitive theorist expresses the learning theory as a computer model, it often takes the form of an
architecture and some programs. Some of the theory’s prior capabilities are expressed as programs and some
are features of the architecture. There is no logical reasoning why the prior capabilities must be part of the
architecture alone. Indeed, it is hard enough to formulate a detailed computational model without being
saddled with this superfluous restriction. What matters is developing a scientifically adequate explanation of
the phenomena, and that does not entail any particular alignment of prior capabilities with distinctions

inherent in the modeling technology.

Cognitive modeling has produced relatively isolated computer-based models, which, as Newell (1973)
points out, leaves psychology with no unified theory of cognition. It seems to us that there are three
approaches 10 a unified theory:

1. Reduce all the models to the lowest common denominator. A model of the lowest-level
cognitive processes is selected (or developed) and models of higher level processes are
(re-)implemented on top of them. ACT* is an example of such a unified theory of cognition.

As Anderson discovered, actually implementing a model of a higher level processes on top of a

31

model of lower-level processes is technologically difficult, to put it mildly. Even if it could be
done, the model would produce unusably complex “explanations” of high level human
behavior. In order to achieve integration, this approach sacrifices the explanatory adequacy of

the higher level models.

2. Develop models at different levels, and indicate explicilly how they relate to each other. This
approach seems 1o characterize Anderson’s recent computational models (Anderson, 1989).
Grapes and Pups are high-level architectures that omit spreading activation and other memory
mechanisms, but are intended to be homomorphic to ACT* in all other respects. Exactly how
these higher level architectures map onto ACT* is not made fully explicit, although it should be

if the ensemble is to qualify as a unified theory of cognition.

3. Develop models at different levels, where each level is a copy of the one below it. This
approach seems to characterize the Soar work (Newell, 1977). Soar has been used as a model
of lower level processes, such as stimulus response compatibility and transcription typing
(Rosenbloom & Newell, 1987; John, 1988), where its cycle times correspond roughly to the
frequency of updates to human memory. Soar has also been used for modeling computer
configuration, algorithm design and other higher level problem solving tasks (Rosenbloom et
al., 1985), where its cycle times correspond to seconds or minutes of real time. In principle, the
primitives provided by the authors of these higher level models could be replaced by Soar
programs that are similar to those used in the modeling of the lower level processes.
We think that the second approach is the best. It allows models of higher level processes to be expressed in
any way that optimizes the clarity and productivity of the explanations. The third approach forces the
theorist to use the same architecture for both low level and high level models, and that seems analogous to
forcing the quantum physicist and the biologist to use the same mathematics for their models. In principle it

could be done, but the clarity of the models would be sacrificed.

In summary, Teton and similar architectures should not be viewed as claims about innateness,
universality or penetrability. They should be viewed as part of a model that explains problem solving and
skill acquisition. The model contains assumptions about what capabilities are possessed by subjects prior to
training. Some, but not all, of those capabilities are modeled by features of the architecture. The others are
modeled by pre-existing programs. Eventually, this model should be related via explicit mappings to models

of lower-level processes, notably memory, attention, perception and motor control.

The remainder of this chapter con‘ains another explanation of the psychological status of goal

reconstruction. We claim that goal reconstruction is a prior capability of problem solving, which means that
all subjects possess this capability prior 10 learning the given problem solving procedure. One way to sce
what this means is by seeing what other prior capabilities would needed in a model of skill acquisition. The
following sections list capabilities that, in our estimation, are prior capabilities for the tasks usually studied in

the problem-solving literature: physics, blocks world, Tower of Hanoi, algebra, eight puzzle, etc.

4.1. Goal reconstruction

The key property that makes goal reconstruction a candidate for a prior capability is that it does not
have to be learned, or at least that it does not have to be learned each time a new procedure is learned. To
demonstrate this, consider a gedanken experiment. Suppose we train subjects in an entirely novel procedure,
being careful never to interrupt them while they are executing the procedure. When they have mastered it, we
perform the telephone test: we interrupt them in the middle of solving a problem, have them engage in an
interference task sufficient to wipe out goal memory, then have them resume their original task. Presumably,
they would all be able to reconstruct their internal state for this procedure, even though they had never done
reconstruction on this procedure before. This gedanken experiment shows that their reconstructive capability

was acquired prior to the acquisition of the procedure.

As the discussion in section 2.4 indicated, some cases of goal reconstruction seem 10 require task-
specific knowledge. These kinds of goal reconstruction would have to be acquired along with the task’s
procedure. Although we claim that some goal reconstruction is a prior capability, we are not claiming that
all goal reconstruction is due to prior capabilities. Teton’s architecture embeds specific claims about what

kinds of goal reconstruction are prior and what kinds would have 1o be Icarned.

4.2. Explanation of worked examples

Another capability that seems to come "for frec” when one learns a procedure is explanation of worked
examples. A worked example is a problem that has been solved in such a way that a parual trace of the
solution process is available. Math and physics texibooks have many worked examples. Usually, the
textbooks print only the results of visible actions of the procedure, the actions that the students would write if
they were solving the procedure. The invisible actions, such as deciding which goal or strategy to pursue, are
usually left out. Often the exact nature of the visible actions is underspecified, too. For instance, the
textbook might print an algebraic equation but not say what operation was used to produce it. Explaining a
worked example entails producing all the information that is necessary for solving the problem but has been

left out of the printed material.

-
£

There is ample evidence that people can explain worked examples even when the procedure they are
using to explain the example is new to them (Chi, Bassok, Lewis, Reimann & Glaser, 1989; Pirolli &
Bielaczyc, 1989). This indicates that the ability to explain a worked example is a prior capability. That is,
after one has learned a procedure well enough to execute it, then one can automatically explain examples

with it as well. The converse may also be true (Chi, Bassok, Lewis, Reimann & Glaser, 1989).

It .ould be objected that explaining an example is exactly the same as solving the example’s problem.
This is true only of simple cases. In more complicated cases, the example might not use exactly the same
order of steps as the subject would use. It might produce intermediate steps that the subject would not, or use
less efficient strategies than the subject would. Although these permutations may make explaining the
example slightly more difficult, they probably do not make it impossible. So example explaining really is a

different process than interpreting a procedure. Thus, it shouid be viewed as a distinct prior capability.

4.3. Impasse handling

When people are executing a procedure, even a fairly well-known procedure, they someumes get
stuck. For instance, if you normally make a white sauce using butter, flour and milk, and you discover, after
mixing the butter and flour together and cooking them for a while, that you are out of milk, then you are at an
impasse. People seem to have a fairly standard set of capabilites for handling impasses. For instance, one
standard so-called repair strategy is substitution (Brown & Vanl.ehn, 1980). In the case of the white sauce
procedure, the cook might substitute for the milk something that is liquid, edible, mildly flavored and
otherwise quite simular to the milk. Another repair is backing up. In the case of the white sauce, one might
back up to the procedure that requiced the sauce (e.g., your favorite moussaka recipe) and reconsider the need

for the sauce.

Repair strategies seem to bc somewhat independent of the impasse and the proccdure that they are
applied to (Vanlehn, 1089a). For instance, the two white sauce repair strategies, substitution and backing
up, are also applied by arithmetic students to arithmetic procedures (VanLehn, 1989a). This illustrates the
claim that people have a stock of gencral purpose repair strategies that can be adapted for use with any
procedure’s impasses. The impasse-repair process is a prior capability because it does not have to be learned

as each new procedure is learned.

34

4.4. Rule acquisition events

It is often conjectured that human problem solvers can interrupt their procedure, reason about the
procedure and its efficacy, make a modification to the procedure, and resume execution of the modificd
procedure. In carly work, the existence of these rule acquisition events was inferred from changes in the
person’s problem solving behavior (e.g., Anzai & Simon, 1979; Neches, 1987). Recent fine-grained protocol
analyses have shown that people tend to pause and/or make unusual verbal comments during a rule
acquisition event (VanLehn, 19?7, Vanlehn, 1989b; Siegler & Jenkins, 1989). For instance, in one 90
minule protocol (VanLehn, 1977), there were 11 rule acquisition events of whick 10 were accompanied by
either long pauses, reflective comments (e.g., "It’s just like moving four, isn’t it?") or negative comments
(e.g., "Wrong... this is the problem and..."). These detailed analyses support the hypothesis that people can

reason about and madify their procedures even in the midst of using them.

We are currently developing detailed simulatious of rule acquisition events taken from protocols of
students learning college physics. It is already clear that the subjects have a large variety of rule acquisition
methods that they use to analyze and modify their procedures. For instance, a particularly powerful and
common method is plausible explanation completion. When subjects try to explain a worked example and
their knowledge of the target procedure is incomplete, then they will sometimes be unable o complete an
explanation of the example. There will be segments of the example’s solution that carnot be parsed by the
student’s procedure. One rule acquisition method is to invent new rules that will complete the example’s
explanauon (VanLehn, 1987; Danyluk, 1989; Ali, 1989: Fawcett, 1989; Pazzani, 198%; Wilkins, 1988; Shank
& Leake, 1989). In general, there are combinatorially many ways 10 complete an explanation (Nowlan,
1987). Rather than scarch for the “correct” completion, the physics students seecm to use plausible or
heurisuc explanation strategies. For instance, one student could not explain where a certain minus sign came
from in a physics equation. She eventually formed an explanation after noting that the quantity hearing the
minus sign came from a vector whose x-projection lay along the negative x-axis. She said, “The reason the
negative is there is because the X component is in the negative direction on the X axis.” Apparenty this
subject used the heuristic that mathematical manipulations usually conscrve negations. That is, it is not
permitied to create or delete a negation arbitrarily. On this reasoning, the negation in her equation had to
come, ultimately, from some existing negation, such as the negative paic of the X-axis. Plausible explanation
completion is halfway between syntactic explanation completion (e.g., VanLehn, 1987), where completions
are chosen based on their size or other structural characteristics, and explanation-based leaming (Mitchell,
Keller & Kedar-Cabelli, 1986), where new rules are created by specializing gencral rules that are used in an

explanation.

35

Plausible explanation completion is just one of many rule acquisition methods that seem to be used by
people in order to improve their understanding of a task domain. Since they are used in the course of

acquiring a procedure, they must have existed before the procedure. Thus, they are a prior capability.

4.5. Conclusions

This list has illustrated just a few prior capabilities that a theory of skill acquisition would need to
assume. Some capabilities, such as goal reconstruction and explanation of worked examples, are best
modeled as features of the architecture. Other prior capabilities, such as reading and writing English, are best
modeled as procedural knowledge. Still other capabilities, such as repairing impasses, are best medeled as a

mixture of architectural features and procedural knowledge.

Whether a capability is modeled as procedural knowledge or a feature of the architecture is
independent of whether it is a prior capbility or acquired during the observation period. Indeed, we see no
logical problems with hypothesizing that sume features of the architecture are acquired. (Although we do see

interesting technical challenges in developing a learning mechanism that modifies the architecture.)

Having distinguished prior capabilities from architectures, both computational and cognitive, we hope
we have clarified the main psychological claim of the paper, which is simply that goal reconstruction is a

prior capability for classical problem solving and skill acquisition.

36

5. Appendix: Teton

Teton is a von Neuman machine, so it has two kinds of memory. The knowledge base is a large, slowly
changing memory that holds general knowledge, such as procedures for solving problems, inference rules
and general facts. The working memory is a rapidly changing memory that holds information produced in the
course of a computation. Like all von-Neuman machines, Teton has an built-in execution cycle that
interprets procedural knowledge stored in its knowledge base. The execution cycle consists of (1) deciding
what 1o do, based on the current states of the working memory and the knowledge basc, and (2) doing whai it
decided to do. The execution cycle is an algorithm that treats the information in the working memory and the

knowledge base as formatted data. The format of the data is called the representation language.

This description of Teton has, so far, said nothing that would distinguish it from any other von Neuman
machine. To define Teton per se, the following three section will describe, respectively, its representation

language, its execution cycle and its memories.

5.1. Knowledge representation

Teton’s representation language is appropriate for procedural knowledge, but clumsy at best for
representing declarative knowledge. For instance, it is simple to represent addition and subtraction
algorithms, but it is difficult to represent that addition and subtraction are inverses. This is not intended to be
a claim that the mind has only clumsy ways to represent declarative knowledge. It means only that we have
not investigated tasks where declarative knowledge has a major influence, so we have not yet included a

language appropriate for representing declarative knowledge.

In working memory, the main unit of information is the goal. A goal serves many purposes. It can
represent an action that has already been completed, or an action that is planned but not yet begun, or an
action that is in progress. A goal has slots for indicating a state to be achicved, an operation, the state
resulting from the operation, subgoals created by the operation, the supergoal of this goal, the time that the

goal was created, and so on.

In the knowledge base, there are two kinds of knowledge: operators and selection rules. Operators
have the following parts
1. A goal type, which indicates what kinds of goals this operator is appropriate for. This

description usually has variables that must be instantiated before the operator can be executed.

2. A set of preconditions. If all these prcdicates hold of the current state of working memory, then

the operator can be executed. If not, then the architecture will automatically create subgoals for

37

each of the unsatisfied preconditions. Operators may have an empty set of preconditions.

3. A body, which describes what is to happen when the operator is executed. If the operator is a
primitive, the body describes the changes that will occur to the situation and/or the rest of
working memory. If the operator is non-primitive (i.e., a macro-operator), the hody describes

what subgonls the opesator will create when it is executed.

4. A shortcut condition, which is true if the operator can be assumed to be completed.
Teton’s operators allow both deliberate subgoaling and operator subgoaling. The execution of the body of an
operator can create subgoals (deliberate subgoaling), and the architecture will create subgoals if an operator’s

preconditions are unsatisfied (operator subgoaling).

Selection rules are the other type of knowledge in Teton’s knowledge base. They are used for
selecting a goal to work on and for selecting an operator to use for achieving the selected goal. There are
three types of selection rules. Consideration rules indicate that a goal or operator should be considered.
These rules are consulted first. They usually produce a large set of items. Rejection rules are consulted next,
and cause some of the items to be removed from the set of items under consideration. Preference rules are
consulted last. They partially order the set of items under consideration. Normally, one item will be
preferred over all the others. It is the one selected. Teton’s selection rule mechanism is similar to the ones
used by Soar (Rosenbloom, Newell & Laird, 1990) and Prodigy (Carbonell, Knoblock & Minton, 1977). All
three system use this type of mechanism because it makes it easy to implement the acquisition of strategic

knowledge: just add new selection rules.?

5.2. The execution cycle

The main loop of Teton’s interpreter is shown in table 5-1. Most of it is quite standard: Goals are
sclected by goal selection rules. Operators are selected by operator selection rules. Unsatisfied preconditions
cause subgoaling. Execution of macro-operators cau<es subgoaling. Execution of primitive operators causes
state changes. However, there are two facilities, impasses and shortcut conditions, that are not standard and

deserved some explanation.

Whenever the architecture needs to select a goal or operation, it enumerates all possible candidates,

filters this set with the rejection-type selection rules, then rank orders the set with the remaining selection

Teton’s selection rule mechanism is not fully implemented. Although the preference rules are represented explicitly, the
consideration and rejection rules are implemented as Lisp code. The code for goal consideration enumerates all goals in working
memory that are marked "pending” and have no subgoals marked "pending.” The code for operator consideraion enumerates all
operators that match the selected goal.

38

1. Select a goal from working memory using the goal selection rules. If there is no unique
selection exists, then create an impasse goal describing that and select it.

2. If the selected goal has an operation selected for it already, then skip the next step.

3. Select an operation (a partially instantiated operator) for the current goal using the operator
selection rules. If there is no unique operation, then create an impasse goal describing that,
make it a subgoal of the selected goal, select it, and repeat this step.

4.If the selected operation has unsatisfied preconditions, then create a new goal for each such
precondition and link it to the selected goal as a subgoal. Leave the selected goal marked
"pending,” and return to step 1.

5. If the selected operation has a shortcut condition and it is true, or it has subgoals and they are
all completed, then mark the selected goal "completed” and return to step 1.

6. If the operation is primitive, then execute the operation, mark the selected goal "completed”,
and return to step 1.

7. Otherwise, the operation is non-primitive, so execute the operation and return to step 1.
Execution will cause new subgoals to be created and linked to the selected goal as subgoals.

Table 5-1: The main loop of Teton’s interpreter.

rules. If one choice is better than all the others, then Teton takes it. However, if the selection rules fail to
uniquely specify a choice (e.g., they reject all possibilities, or they cannot decide among a two possibilities),
then an impasse occurs. As in Soar (Rosenbloom, Newell & Laird, 1990) and Sierra (VanLehn, 1987;
Vanlehn, 1989a), an impasse causes the architecture to automatically create a new goal, which is to resolve
the impasse. Typically, such resolve-impasse goals are tackled by task-general knowledge. For instance, one
of Sierra’s methods is: If the selection rules cannot decide among several possible candidates, then choose
one randomly. Another popular impasse-resolving method is: If the selection rules rejected all operations for
the current goal, then mark the goal as accomplished even though it is not. This causes the architecture to
"skip” planned actions that it does not know how to accomplish. Brown and VanLehn (1980) exhibited a
collection of such impasse-resolving methods (called "repairs”) and showed how they could explain the

acquisition of many students’ bugs (procedural misconceptions).

Shortcut cenditions play an important role when Teton reconstructs goals that have been forgotten (i.e.,
deleted from working memory). In order to recover from such working memory failures, Teton has to
reconstruct some of the goals it once had. It is assumed that there are some top-level goal that is not
forgotten. The remaining goals are reconstructed by simply executing the procedural knowledge with the
interpreter of table 5-1. However, when the situation corresponds to a half-completed problem, some of the

goals created are superfluous because they have already been achieved. In such cases, the appropriate

——— -

39

shortcut conditions are true, and goals are murked "completed” before any attempt is made to execute them.

One mechanism that is common in other architectures is missing in Teton. Teton goals need not be
selected in last-in-first-out (LIFO) order. For instance, if there are two pending goals, A and B, and A is
selected and leads to a subgoal C, then a LIFO restriction would rule out selecting goal B since C is more
recently created. Most architectures, including Soar and Grapes, place a LIFO restriction on goal selection,

but Teton does not. In the case just mentioned, it allows either B or C to be selected.

5.3. Memories
As mentioned earlier, Teton has two memory stores, the knowledge base and the working memory.
Working memory is composed of four distinct memories:
1. The main working memory is the one that holds the goals and other data structurcs generated by

the execution cycle.

2. The situation holds a representation of the external environment. Its contents model the
subjects’ interpretation of what they see, which is task-specific, like a problem space’s current
siate. For instance, an arithmetic problem is represented as a grid of rows and columns in the

situation, whereas an algebra equation is represented as a tree.

3. The scratchpad is just like the situation, except that the contents represent something that the
subject is imagining, rather than actually seeing. For instance, some subjects imagine the result
of a move during problem solving before actually making the move in the real world. In order

to model such events, Teton distinguishes the situation from the imagination.

4. The buffer is a limited capacity store for items that have simple verbal encodings, such as
numbers.
The latter two memories are a noveity in computational models of the architecture, so they are worth a little
explanation. They are designed as simple versions of the two slave memories described by Baddeley (1986)
and called the articulatory loop and the visio-spatial scraichpad. According to Baddeley, the articulatory
loop consists of a passive storage medium, called the phonological store, and a mechanism for "rehearsing"
its contents (analogously to a dynamic RAM). The phonological store can hold a phonological code for
about 2 or 3 seconds (Zhang & Simon, 1985). If it is not rehearsed in that time, it becomes inaccessible. The
time required to rehearse a code is linearly related to the time required 10 read the equivalent lexical item.
Thus a person can store a given list of stimulus items if the time required to rehearse them once is less than 2

or 3 seconds. This accounts for the often-cited finding that untrained subjects can store and immediately

40

recall about 7 plus or minus 2 chunks (Miller, 1956). Because rehearsal can go on relatively independently of
most cognitive tasks (Baddeley, 1986), the articulatory loop acts like a short term store with a capacity of a
few phonologically encoded chunks. Teton uses this much simpler model, and allows N chunks to be stored
in the articulatory loop, where N is a parameter of the architecture. Typically, the articulatory loop is used

for temporary storage of numbers.

The visual-spatial scratchpad contains the same kind of items as the situation does, but it is meant to
model a scene that the subject is imagining, rather than the real world. Teton’s version of the scratchpad is
only used for one purpose, which is looking ahead during problem solving in order to project the
consequences of contemplated moves. Consequently, Teton supports only a simple model the scratchpad.
There is a switch in the architecture, which can be set by a primitive operation to either "normal” or
"imaginary.” When the switch is thrown from "normal” to "imaginary," the scratchpad is initialized with a
copy of the items in the current situation. Thereafter, all reading and writing operations that would normally
access the situation access the scratchpad instead. The volatility of the scratchpad is modeled, again quite
crudely, by counting the number of operations applied to it. After a threshold is crossed (the threshold is a

parameter of the model), the contents of the scratchpad become inaccessible.

This facility was used to simulate look-ahead search in the Tower of Hanot, which plays a crucial role
in Anzai and Simon'’s (1979) account of strategy acquisition. In the course of developing a similar account
of strategy acquisition, we discovered that leaming the more advanced versions of the disk subgoaling
strategy would require looking ahead 12 moves in the scratchpad. Not only is this implausible, but setting the
stability parameter of the scratchpad to 13 caused learning of earlier versions of the strategy to go awry. This
led us to look for methods of strategy acquisition that did not use the scratchpad. We found not one but

several, along with good support for them in the protocol data (VanLehn, 19??; VanLehn, 1989b).

41

References

Agre, PE. & Chapman, D. (1987). Pengi: An implementation of a theory of activity. In Forbus, K. &
Shrobe, H. (Ed.), Proceedings of the Sixth National Conference on Artificial Intelligence. Los Altos,
CA: Morgan Kaufman.

Ali, KM. (1989). Augmenting domain theory for explanation-based generalisation. In A. Segre (Ed.),
Proceedings of the Sixth International Workshop on Machine Learning. Los Altos, CA: Morgan
Kaufman.

Anderson, J. R. (1983). The Architecture of Cognition. Cambridge, MA: Harvard.

Anderson, J.r. (1989). A theory of the origins of human knoledge. Artificial Intelligence, 40, 313-352.

Anzai, Y. & Simon, H.A. (1979). The theory of learning by doing. Psychological Review, 86, 124-140.

Baddeley, A. (1986). Working Memory. Oxford, UK: Clarendon Press.

Berwick, R. (1985). The Acquisition of Syntactic Knowledge. Cambridge, MA: MIT Press.

Brooks, R.A. (in press, 1990). How to build complete creatures rather than isolated cognitive simulaiors. In
K. VanlLehn (Ed.), Architectures for Intelligence. Hillsdale, NJ: Erlbaum.

Brown, J. S. & VanLehn, K. (1980). Repair Theory: A generative theory of bugs in procedural skills.
Cognitive Science, 4, 379-426.

Carbonell, J.G., Knoblock, C.A. & Minton, S. (in press, 197?). Prodigy: An integrated architecture for
planning and leaming. In K. VanLehn (Ed.), Architectures for Intelligence. Hilisdale, NJ: Erlbaum.

Charniak, E. & McDermott, D. (1986). Introduction to Artificial Intelligence. Reading, MA: Addison-
Wesley.

Chi, M.T.H., Bassok, M., Lewis, M., Reimann, P. & Glaser, R. (1989). Self explanations: How students
study and use examples in leaming to solve problems. Cognitive Science, 13, 145-182.

Danyluk, A.P. (1989). Finding new rules for incomplete theories: Explicit biases for induction with
contextual information. In A. Segre (Ed.), Proceedings of the Sixth International Workshop on
Machine learning. Los Altos, CA: Morgan Kaufman.

de Kieer, J., Doyle, J., Steele, G.L. & Susman, G.J. (1977). Amord: Explicit control of reasoning. Sigplan
Notices, 12(8), 116-125.

deKleer, J. (1986). An assumption-based truth maintenance system. Artifical Intelligence, 28, 127-162.

Doyle, J. (1979). A truth maintenance system. Artificial Intelligence, 12(3), 231-272.

Emst, G.W. & Newell, A. (1969). GPS: A Case Swdy in Generality and Problem Solving. New York, NY:
Academic Press.

Fawcett, TE. (1989). Leamning from plausible explanations. In A. Segre (Ed.), Proceedings of the Sixth

International Workshop on Machine Learning. Los Altos, CA: Morgan Kaufman.

Fikes, R.E., Hart, PE. & Nilsson, N.J. (1972). Learning and executing generalized robot plans. Ariificial
Intelligence, 3,251-288.

John, B. (1988). Contributions to engineering models of human-computer interaction. Doctoral disscrtation,
Dept. of Psychology, Carnegie-Mellon University,

Laird, J. E., Newell, A., and Rosenbloom, P. S. (1987). Soar: An architecture for general intelligence.
Artificial Intelligence, 33, 1-64.

Miller, G. A. (1956). The magic number seven plus or minus two: Some Limits on our capacity for
processing information. Psychological Review, 63, 81-97.

Mitchell, T.M., Allen, J., Chalasani, P., Cheng, 1., Etzioni, O., Ringuette, M. & Schlimmer, J.C. (in press,
1990). Theo: A framework for self-improving systems. In K. VanLehn (Ed.), Architectures for
Intelligence. Hillsdale, NJ: Erlbaum. Title and authorship taken from draft of 10/11/8.

Mitwchell, T.M., Keller, R M. & Kedar-Cabelli, S.T. (1986). Explanation-based generalization: A unifying
view. Machine Learning, 1(1), 47-80.

Neches, R. (1987). Learning through incremental refinement of procedures. In D.XKlahr, P.Langley &
RNeches (Ed.), Production Systems Models of Learning and Development. Cambridge, MA: MIT
Press.

Newell, A. (1973). You can't play 20 questions with nature and win. In W.G. Chase (Ed.), Visual
Information Processing. New York: Academic.

Newell, A. (in press, 197?). Universal Theories of Cognition. Cambridge, MA: Harvard University Press.

Newell, A. & Simon, H. A. (1972). Human Problem Solving. Englewood Cliffs, NJ: Prentice-Hall.

Nowlan, S. (1987). Parse completion: A study of an inductive domain (Technical Report PCG11).
Department of Psychology, Carnegic-Mellon University.

Pazzani, M. (1988). Integrated learning with incorrect and incomplete theories. In J. Laird (Ed.),
Proceedings of the Fifth International Workshop on Machine Learning. Los Altos, CA: Morgan
Kaufman.

Pirolli, P. & Bielaczyc, K. (1989). Empirical analyses of self-explanation and transfer in learming to
program. In G. Ohlson & E. Smith (Ed.), Proceedings of the Annual Conference of the Cognitive
Science Society. Hillsdale, NJ: Erlbaum.

Pylyshyn, Z. W. (1984). Computation and Cognition. Cambridge, MA: Bradford Books.

Rosenbloom, P. & Newell, A. (1987). Leaming by chunking: A production system model of practice. In
D.Klahr, P.Langley & R. Neches (Ed.), Production System Models of Learning and Development.

43

Cambridge, MA: MIT Press.

Rosenbloom, P.S., Laird, J.E., McDermott, J., Newell, A. & Orchiuch, E. (1985). R1-Soar: An experiment
in knowledge-intensive programming in a problem solving architecture. Pattern Analysis and Machine
Intelligence, 7, 561-567.

Rosenbloom, P.5., Newell, A & Laird, J.E. (in press, 1990). Towards th : knowledge level in Soar: The role
of the architecture in the use of knowledge. In K. Vanlehn (Ed.), Architectures for Intelligence.
Hillsdale, NJ: Erlbaum.

Schank, R.C. & Leake, D.B. (1989). Creativity and learning in a case-based explainer. Artificial
Intelligence, 40, 353-386.

Siegler, R.S. & Jenkins, E.A. (1989). How children discover new strategies. Hillsdale, NJ: Erlbaum.

Suchman, L.A. (1987). Plans and Situated Actions: The problem of human-machine communication. New
York: Cambridge University Press.

Vanlehn, K. (1983). Felicity conditions for human skill acquisition: Validating an Al-based theory (Tech.
Report CIS-21). Xerox Palo Alto Research Center. Out of print, but available as 2?7 from University
Microfilms, 300 North Zeeb Road, Ann Arbor, MI 49106.

VanLehn, K. (1986). Arithmetic procedures are induced from examples. In J. Hiebert (Ed.), Conceptual
and Procedural Knowledge: The Case of Mathematics. Hillsdale, NJ: Erlbaum.

VanLehn, K. (1987). Learning one subprocedure per lesson. Artificial Intelligence, 31(1), 1-40.

VanLehn, K. (1989). Learning events in the acquisition of three skills. In G. Ohlson & E. Smith (Ed.),
Proceedings of the Annual Conference of the Cognitive Science Society. Hillsdale, NJ: Erlbaum.
Vanlehn, K. (in press, 1990). Mind Bugs: The origins of procedural misconceptions. Cambridge, MA:

MIT Press.

VanLehn, K. (submitied, 197?). Rule acquisition events in the discovery of problem solving strategies.
Cognitive Science, 7?2, 77-77 Currently available as technical report PCG-17, Dept. of Psychology,
Camnegie-Mellon University.

VanLehn, K., Ball, W. & Kowalski, B. (1989). Non-LIFO execution of cognitive procedures. Cognitive
Science, 13,415-465.

Vere, S. (1975). Induction of concepts in the predicate calculus. In Proceedings of the Fourth IICAI. Los
Alos, CA: Kaufmann,

Wilkins, D.C. (1988). Knowledge base refinement using apprenticeship leaming techniques. In Smith, R. &
Mitchell, T.M. (Ed.), Proceedings of the Seventh National Conference on Artificial INtelligence. 1.0s
Altos, CA: Morgan-Kaufman.

44

Winston, P. H. (1975). Leaming structural descriptions from examples. In P. H. Winston (Ed.), The
Psychology of Computer Vision. New York: McGraw-Hill.

Zhang, G. & Simon, H.A. (1985). STM capacity for Chinese words and idioms: Chunking and acoustical
loop hypotheses. Memory and Cognition, 13(3), 193-201.

